CSE 391

Shell commands
More Redirection

Logistics, Roadmap
Combining Commands

More input/output redirection
cut, reading log files

ROADMAP

Introduction to the command line
Input/output redirection, pipes

More input/output redirection, tee, xargs
Git: Fundamentals

Git: Branches and rebasing

Regular expressions

More regular expressions, sed

Users and permissions

Bash scripting

Industry applications

command1 | command2

e Execute command1 and send its standard output as standard input to
command?2.
e This is essentially shorthand for the following sequence of commands:

command1 > filename
command2 < filename
rm filename

e This is one of the most powerful aspects of unix - being able to chain
together simple commands to achieve complex behavior!

COMBINING COMMANDS

command1 ; command2

e Execute command1, then execute command2.
command1l && command2

e Execute command1, and if it succeeds, then execute command?2.
command1l || command2

e Execute command1, and if it fails, then execute command2.

.p ltem POOl Pause Video when Prompted

What would happen after running the following command: 1s *.java | javac

Solution: This won’t work because javac does not read from stdin! Piping makes
the stdout of the last program become stdin of the next.

XARGS

e Xargs is a program that converts standard input to command line arguments
(i.e. parameters).

e For example, to compile all java files in the current directory we could use the
following:
o § 1ls *.java | xargs javac

e find is a program for searching your filesystem for certain files.
e For example, to list all java files in the current directory and all subdirectories,

recursively, we would run the following
o § find -name “*.java”
e This is commonly used with xargs. For instance, to compile all Java files in
the current directory and all subdirectories recursively
o § find -name “*.java” | xargs javac
e Note that find has a plethora of options and flags, but we will most
commonly use find with the -name and -type flags

COMMAND SUBSTITUTION

S(command)

e Another powerful tool is command substitution. It executes the given
command and places that string literally into the given context.

e For example, to compile all Java files in the current directory and

subdirectories recursively, we can run the following
o $ javac $(find -name “*.java”)

.p ltem POOl Pause Video when Prompted

What is the command to remove all files listed in the file toRemove. txt?

toRemove.txt

CompilerErrors.java
beans.txt

xargs rm < toRemove.txt

STDERR REDIRECTION

e We've learned that we can redirect standard error using the 2> operator.
e Sometimes, however, we want standard error and standard out to go to the

same location. We can do that with the following syntax:
o § command > out.txt 2>&1

e To understand this command, this reads as “redirect standard out to
out. txt, redirect standard error to the same place as standard out”

TEE

e Sometimes, we want to redirect the output of a command to both a file and

to the console. Do do this, we can pipe the output of a command to tee
o S command | tee file.txt
e To redirect both standard output and standard error to a file, and to the

console, we use the following
o S command 2>&1 | tee file.txt

|p ltem pOOl- Pause Video when Prompted

Suppose we want to run the Java program Mystery. What would be the
command to output both standard error and standard output to
mystery_out. txt and print both to the console?

java Mystery.java 2>&1 | tee mystery.txt

CUT

cut -d<DELIMITER> -f<FIELD>

e cut is asimple program to split lines based on a given delimiter.
e For example, to split the string “a,b,c,d,e” on commas and get the second

entry, we would use the following:
o $echo “ab,c,d,e”|cut -d, -2
o Note: the echo program simply prints the given string to standard out

LOGS

e A common exercise in daily software development and operations is looking
at log files - basically a status report of what is going on inside the program.

e We can look at the logs for all the CSE course websites by reading the file:
/cse/web/courses/logs/common_log

e For example, to actively watch the log file and only look for access to our
own course website, we could use the following

S tail -f /cse/web/courses/logs/common_log | grep “391"

