
CSE 391
Shell commands
More Redirection

Slides created by Josh Ervin and Hunter Schafer.
Based off slides made by Marty Stepp, Jessica Miller, Ruth Anderson, Brett Wortzman, and Zorah Fung

AGENDA

● Logistics, Roadmap
● Combining Commands
● More input/output redirection
● cut, reading log files

ROADMAP

● Introduction to the command line
● Input/output redirection, pipes
● More input/output redirection, tee, xargs
● Git: Fundamentals
● Git: Branches and rebasing
● Regular expressions
● More regular expressions, sed
● Users and permissions
● Bash scripting
● Industry applications

PIPES

command1 | command2

● Execute command1 and send its standard output as standard input to
command2.

● This is essentially shorthand for the following sequence of commands:
command1 > filename
command2 < filename
rm filename

● This is one of the most powerful aspects of unix - being able to chain
together simple commands to achieve complex behavior!

COMBINING COMMANDS

command1 ; command2

● Execute command1, then execute command2.

command1 && command2

● Execute command1, and if it succeeds, then execute command2.

command1 || command2

● Execute command1, and if it fails, then execute command2.

What would happen after running the following command: ls *.java | javac

Solution: This won’t work because javac does not read from stdin! Piping makes
the stdout of the last program become stdin of the next.

XARGS

● xargs is a program that converts standard input to command line arguments
(i.e. parameters).

● For example, to compile all java files in the current directory we could use the
following:
○ $ ls *.java | xargs javac

FIND

● find is a program for searching your filesystem for certain files.
● For example, to list all java files in the current directory and all subdirectories,

recursively, we would run the following
○ $ find -name “*.java”

● This is commonly used with xargs. For instance, to compile all Java files in
the current directory and all subdirectories recursively
○ $ find -name “*.java” | xargs javac

● Note that find has a plethora of options and flags, but we will most
commonly use find with the -name and -type flags

COMMAND SUBSTITUTION

$(command)

● Another powerful tool is command substitution. It executes the given
command and places that string literally into the given context.

● For example, to compile all Java files in the current directory and
subdirectories recursively, we can run the following
○ $ javac $(find -name “*.java”)

What is the command to remove all files listed in the file toRemove.txt?

toRemove.txt

CompilerErrors.java
beans.txt

xargs rm < toRemove.txt

STDERR REDIRECTION

● We’ve learned that we can redirect standard error using the 2> operator.
● Sometimes, however, we want standard error and standard out to go to the

same location. We can do that with the following syntax:
○ $ command > out.txt 2>&1

● To understand this command, this reads as “redirect standard out to
out.txt, redirect standard error to the same place as standard out”

TEE

● Sometimes, we want to redirect the output of a command to both a file and
to the console. Do do this, we can pipe the output of a command to tee
○ $ command | tee file.txt

● To redirect both standard output and standard error to a file, and to the
console, we use the following
○ $ command 2>&1 | tee file.txt

Suppose we want to run the Java program Mystery. What would be the
command to output both standard error and standard output to
mystery_out.txt and print both to the console?

java Mystery.java 2>&1 | tee mystery.txt

CUT

cut -d<DELIMITER> -f<FIELD>

● cut is a simple program to split lines based on a given delimiter.
● For example, to split the string “a,b,c,d,e” on commas and get the second

entry, we would use the following:
○ $ echo “a,b,c,d,e” | cut -d, -f2
○ Note: the echo program simply prints the given string to standard out

LOGS

● A common exercise in daily software development and operations is looking
at log files - basically a status report of what is going on inside the program.

● We can look at the logs for all the CSE course websites by reading the file:
/cse/web/courses/logs/common_log

● For example, to actively watch the log file and only look for access to our
own course website, we could use the following

$ tail -f /cse/web/courses/logs/common_log | grep “391”

