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AGENDA

● Logistics, Roadmap
● Combining Commands
● More input/output redirection
● cut, reading log files



ROADMAP

● Introduction to the command line
● Input/output redirection, pipes
● More input/output redirection, tee, xargs
● Git: Fundamentals
● Git: Branches and rebasing
● Regular expressions
● More regular expressions, sed
● Users and permissions
● Bash scripting
● Industry applications



PIPES

command1 | command2

● Execute command1 and send its standard output as standard input to 
command2.

● This is essentially shorthand for the following sequence of commands:
command1 > filename
command2 < filename
rm filename

● This is one of the most powerful aspects of unix - being able to chain 
together simple commands to achieve complex behavior!



COMBINING COMMANDS

command1 ; command2

● Execute command1, then execute command2.

command1 && command2

● Execute command1, and if it succeeds, then execute command2.

command1 || command2

● Execute command1, and if it fails, then execute command2.



 

What would happen after running the following command: ls *.java | javac

Solution: This won’t work because javac does not read from stdin! Piping makes 
the stdout of the last program become stdin of the next.



XARGS

● xargs is a program that converts standard input to command line arguments 
(i.e. parameters).

● For example, to compile all java files in the current directory we could use the 
following:
○ $ ls *.java | xargs javac



FIND

● find is a program for searching your filesystem for certain files.
● For example, to list all java files in the current directory and all subdirectories, 

recursively, we would run the following
○ $ find -name “*.java”

● This is commonly used with xargs. For instance, to compile all Java files in 
the current directory and all subdirectories recursively
○ $ find -name “*.java” | xargs javac

● Note that find has a plethora of options and flags, but we will most 
commonly use find with the -name and -type flags



COMMAND SUBSTITUTION

$(command)

● Another powerful tool is command substitution. It executes the given 
command and places that string literally into the given context.

● For example, to compile all Java files in the current directory and 
subdirectories recursively, we can run the following
○ $ javac $(find -name “*.java”)



 

What is the command to remove all files listed in the file toRemove.txt?

toRemove.txt

CompilerErrors.java
beans.txt

xargs rm < toRemove.txt



STDERR REDIRECTION

● We’ve learned that we can redirect standard error using the 2> operator.
● Sometimes, however, we want standard error and standard out to go to the 

same location. We can do that with the following syntax:
○ $ command > out.txt 2>&1

● To understand this command, this reads as “redirect standard out to 
out.txt, redirect standard error to the same place as standard out”



TEE

● Sometimes, we want to redirect the output of a command to both a file and 
to the console. Do do this, we can pipe the output of a command to tee
○ $ command | tee file.txt

● To redirect both standard output and standard error to a file, and to the 
console, we use the following
○ $ command 2>&1 | tee file.txt



 

Suppose we want to run the Java program Mystery. What would be the 
command to output both standard error and standard output to 
mystery_out.txt and print both to the console?

java Mystery.java 2>&1 | tee mystery.txt



CUT

cut -d<DELIMITER> -f<FIELD>

● cut is a simple program to split lines based on a given delimiter.
● For example, to split the string “a,b,c,d,e” on commas and get the second 

entry, we would use the following:
○ $ echo “a,b,c,d,e” | cut -d, -f2
○ Note: the echo program simply prints the given string to standard out



LOGS

● A common exercise in daily software development and operations is looking 
at log files - basically a status report of what is going on inside the program.

● We can look at the logs for all the CSE course websites by reading the file: 
/cse/web/courses/logs/common_log

● For example, to actively watch the log file and only look for access to our 
own course website, we could use the following

$ tail -f /cse/web/courses/logs/common_log | grep “391”


