Building a distributed message
processing system in Go using NSQ_

Greg Bray (@GBrayUT on Twitter)
Edge Platform Operations (@WalmartLabs

Slides at bit.ly/nsqgslides Some content from nsq.io

Goal: Process logs in a complex environment

Logs and other messages are produced by:

e Many servers across many different locations

e For different purposes:
o Weblogs
o Systemlogs
o Security logs
o Telemetry data
o Etc ..
e From different sources
o Direct from various services
o Log files (stdout / stderror)
o syslog

Need a way to aggregate and process logs
efficiently, with flexibility to meet fluid requirements

Destinations:

Long term storage (kafka to hdfs)

Search backend (ELK stack)

Other pipelines (nsq, syslog, etc)
Monitoring system (Prometheus metrics)
Adhoc troubleshooting

/dev/null (emergency overflow)

Some destinations need filtering or prioritization of
data streams.

Some data streams have other requirements like
encryption, low latency, etc...

Slides at bit.ly/nsqslides

6

NSQ Docs 1.0.0-comp

[l & Secure | https:/nsq.io

@ NSQ

A realtime distributed messaging platform

e g T

Get Started

simplereach o\ LYTICS

:22 Distributed

NSQ promotes distributed and
decentralized topologies without
single points of failure, enabling
fault tolerance and high availability
coupled with a reliable message
delivery guarantee. See features &
guarantees.

heavy watar

@ Scalable

NSQ scales horizontally, without
any centralized brokers. Built-in
discovery simplifies the addition of
nodes to the cluster. Supports
both pub-sub and load-balanced
message delivery. It's fast, too.

©ORakuten
MEDIAFORGE ™

socialradar

£ Ops Friendly

NSQ is easy to configure and
deploy and comes bundled with an
admin UL. Binaries have no
runtime dependencies and we
provide pre-compiled releases for
linux, darwin, freebsd and
windows as well as an official
Docker image.

=WISTIA

</> Integrated

Official Go and Python libraries are
available as well as many
community supported libraries for
most major languages (see client
libraries). If you're interested in
building your own, there’s a
protocol spec.

RabbitMQ ZeroMQ NSQ
Favorites Favorites Favorites

* * *

107 16 19
1.99K 101 50

| Use This 1 Use This 1 Use This

Fans Fans Votes obs Fans Votes

131K 385 1.12K 87 46 39 79 123 97

B 0 o B 0 o)

402 320 8.14K 708 797 2.46K 286 15

SitHub Stats (’ * (? m (:’ * Y [ﬂ (, * ? m
GitHub Stats
4.14K 1.08K Zdasaee 433K 1.31K 'dayage 12.5K 1.64K day ago

& [y

https://stackshare.io/stackups/nsq-vs-rabbitmq-vs-zeromq

Pros

a
23

o
18

a
17

>p up op ahp o)

Distributed
Lightweight
Easy setup

High throughput

Publish-Subscribe

Save data if no subscribers are
found

Scalable
Open source

Temporarily kept on disk

Cons
& Needs Erlang runtime. Need
ops good with Erlang runtime

3

& Too complicated cluster/HA
1 config and management
a
1

Configuration must be done
first, not by your code

Companies using RabbitMQ

Cons Cons
o submitted yet for NSQ

No message durability

1

& Not a very reliable system -
1 message delivery wise
a
1

M x N problem with M
producers and N consumers

Companies using ZeroMQ Companies using NSQ

¢~ e BEcehE 0B-Be o
cBED 0 *EE«0E © 0 BE
By:—-z:(-.-u.-mu i(////{"‘afwl!@ -“.tZ Y|

See more stacks

See more stacks

Topics, Channels, and Consumers

e Top level: Topics are streams of data
e Split topics into Channels

o Each channel gets a copy of all messages
e Channels can have one or more Consumers

o Consumers pull messages from a channel and must
FIN (finish) or REQ (re-queue) each message it takes
Configurable timeout for automatic re-queueing
Scale out: more consumers for more throughput
Can be local or remote (basic discovery via lookupd)
A consumer may just filter messages and publish them
into another Topic on a local or remote system
e Topics and Channels are created at runtime, just start

publishing/subscribing (Auto cleanup if #Ephemeral)

separate hosts

Consumers

o O O O

Good example of a high performance system written in Go. See internals at https://nsqg.io/overview/internals.html

https://nsq.io/overview/internals.html

Lookupd: nsqd registers topics and channels

remove the need for publishers and consumers to know about each other

producer

l @ publish msg (specifying topic)
@ IDENTIFY
m ® REGISTER (topic/channel)

Axtcm TCP connections
nsqlookupd nsqlookupd

Lookupd: Consumers query for nodes/topics

DISCOVERY (CLIENT)
remove the need for publishers and consumers to know about each other

HTTP requests

O regularly poll for topic producers

CUNUNCIE @ connect to all producers

Redundancy... eliminate Single Point of Failure

ERMINATE ALL TRIESF S

- easlly enable distributed and
decentralized topologies

* no brokers
* consumers connect to all producers
* messages are pushed to consumers
* nsqlookupd instances are independent
and require no coordination (run a consumer consumer
few for HA)

Messages usually stored in memory (but overflow to disk)

QUEUES

channel
*topics and channels are independent queues —

high water mark i
— persisted
messages

*queues have arbitrary high water marks (after
which messages transparently read/write to
disk, bounding memory footprint)

*supports channel-independent degradation and " 18 i= fange c.incomingsgChan {

select {
= ~ case c.memoryMsgChan <- msg:
recover >/ default:
err := WriteMessageToBackend(&msgBuf, msg, c)
o : if err != nil {
IO ||neS Of GO // log whatever
}

}
}

Example layout. More at

NSQ ARCHITECTURE

[
PUBLISH l
\ .)

REGISTER
|)
nsqlookupd
i y, :
. TN AT
~ - :
~ 4 LY Al ’ ¢
2 4 . - ’
Sy e g
P 9
> e 3 ’ ’
¢ », x ’
0¥ N . ? .

'
'
'
)
'
E e 2T S ‘ nsqlookupd
Par ~ susscrise A4
CCCCCCCC

~ DISCOVER

https://nsq.io/deployment/topology_patterns.html

someuser@servername:~$ curl -s --cacert ~/ca.crt --key ~/nsqd.key --cert ~/nsqd.crt 'https://localhost:4152/stats’
nsqd v0.3.8 (built w/gol.6.2)

start time 2018-05-09T16:20:59Z

uptime 780h16m54.793013562s

Health: OK
[topicA] depth: © be-depth: © msgs: 512579562 e2e%:
[channell 1 depth: © be-depth: © inflt: 8 def: 0 re-q: 7256 timeout: 7256 msgs: 301088800 e2e%:
[V2 ip:49012] state: 3 inflt: 8 rdy: 500 fin: 9630606 re-q: O msgs: 9630614 connected: 102h4m56s
[V2 ip:36945] state: 3 inflt: O rdy: 500 fin: 9700390 re-q: 0O msgs: 9700390 connected: 102h18m26s
[channel2 1 depth: © be-depth: © inflt: 1 def: 0 re-q: 285 timeout: 285 msgs: 211701180 e2e%:
[V2 ip:40949] state: 3 inflt: 1 rdy: 5 fin: 43436806 re-q: 0 msgs: 43436807 connected: 166h34m29s
[topicB] depth: © be-depth: © msgs: 852191855 e2e%:
[channelX 1 depth: © be-depth: © inflt: 1 def: 0 re-q: 105 timeout: 105 msgs: 252191855 e2e%:
[V2 ip:56569] state: 3 inflt: 1 rdy: 5 fin: 24983170 re-q: 0O msgs: 24983171 connected: 93h40ml5s
[channelY 1 depth: 114531 be-depth: 104533 inflt: 5 def: © re-q: 375 timeout: 375 msgs: 211670578 e2e%:
[v2 ip:17175] state: 3 inflt: 5 rdy: 5 fin: 23079733 re-q: 0 msgs: 23079763 connected: 93h20m20s
[channelZ 1 depth: 52426 be-depth: 42428 inflt: 5 def: 0 re-q: 1014 timeout: 1014 msgs: 512579561 e2e%:
[V2 ip:63824] state: 3 inflt: 5 rdy: 5 fin: 40935902 re-q: 0O msgs: 40935954 connected: 166h34m31s
[topicC] depth: © be-depth: © msgs: 512579562 e2e%:
[channelAbandoned] depth: 46985 be-depth: 36987 inflt: 5 def: © re-q: 930 timeout: 930 msgs: 512579561 e2e%:
[channelNew] depth: 0 be-depth: 0 inflt: 5 def: © re-q: 936 timeout: 936 msgs: 512579561 e2e%:
[v2 ip38737] state: 3 inflt: 5 rdy: 5 fin: 40938584 re-q: 0 msgs: 40938639 connected: 166h34m31s

Example of stats output. Also using TLS with client certificates to secure access.

Utilities include in NSQ codebase:

e nsqg_pubsub - expose a pubsub like HTTP interface to topics in an NSQ cluster

e nsq_stat - polls /stats for all the producers of the specified topic/channel and displays
aggregate stats

e nsq_tail - consumes the specified topic/channel and writes to stdout (in the spirit of tail)

e nsq_to file - consumes the specified topic/channel and writes out to a newline delimited file,
optionally rolling and/or compressing the file.

e nsqg_to_ http - consumes the specified topic/channel and performs HTTP requests
(GET/POST) to the specified endpoints.

e nsg_to_nsq - consumes the specified topic/channel and re-publishes the messages to
destination nsqd

e to nsq - takes a stdin stream and splits on newlines for re-publishing to destination nsqd

More details including command line arguments at hitps://nsqg.io/components/utilities.html

https://nsq.io/components/utilities.html

nsq_to_nsq

Consumes the specified topic/channel and re-publishes the messages to destination nsqd via TCP.

Command Line Options

-channel string
nsq channel (default "nsq_to_nsq")
-consumer-opt value
option to passthrough to nsq.Consumer (may be given multiple times, see http://godoc.org/github.com/nsqio/go-nsq#Config)
-destination-nsqd-tcp-address value
destination nsqd TCP address (may be given multiple times)
-destination-topic string
destination nsq topic
-lookupd-http-address value
lookupd HTTP address (may be given multiple times)
-max-in-flight int
max number of messages to allow in flight (default 200)
-mode string
the upstream request mode options: round-robin, hostpool (default), epsilon-greedy (default "hostpool")
-nsqd-tcp-address value
nsqd TCP address (may be given multiple times)
-producer-opt value
option to passthrough to nsq.Producer (may be given multiple times, see http://godoc.org/github.com/nsqio/go-nsqg#Config)
-require-json-field string
for JSON messages: only pass messages that contain this field
-require-json-value string
for JSON messages: only pass messages in which the required field has this value
-status-every int
the # of requests between logging status (per destination), © disables (default 250)
-topic string
nsq topic
-version
print version string
-whitelist-json-field value
for JSON messages: pass this field (may be given multiple times)

ARGS="--cacert ~/ca.crt --key ~/nsqd.key --cert ~/nsqd.crt -lookupd-http-address lookupd01:4161 -lookupd-http-address lookupd02:4161'
nsq_to_nsq $ARGS -destination-nsqd-tcp-address=localhost:4150 -topic topicA -destination-topic topicA-Aggregated

Other utilities we’ve built in Go

file2nsq - watches files on disk and generates nsq messages

nsg2kafka - send messages from specific topics to various Kafka brokers
nsgarchive - similar to nsq_tail but outputs a tar file with one entry per message
nsqg2es - send messages to ElasticSearch (Can replace ELK stack with ENK stack)
nsqcopy - replaces multiple nsq_to _nsq instances with a single dynamic service
using lookupd and a config file for topic source/destinations

e Also tools for decoding encrypted messages, or generating metrics directly from
topics/channels or a filtered topic stream

Each of the above is a simple go program, usually a few hundred lines each. They run on two
“log transport” servers in each data center to aggregate logs from all local servers.

Greg Bray G
> | ‘ @GBrayuUT

Experienced my first 11+ Billion message log
storm today &

nsq.io didn't even blink, although our
accumulators definitely had trouble keeping
up. Ended up having to nsq_tail > /dev/null to
fix it (parallel ~5 million batches @ 2-3
minutes each)

10:38 PM - 22 May 2018

1 Retweet 10 Likes ‘ @ -& @) ﬁ o {3} \:} !

O] 2) 10

Haven’t yet found a breaking point for NSQD (other than running out of disk space)

Any questions?

If this sounds like an interesting problem,
you should come help us solve it!

Hiring Dev and DevOps that are familiar
with Go and interested in “Industrial Grade
Internet / Websites.

n

Some other interesting systems we work on (all in Go):
e Edge Compute / FaaS platform (Lua and Go plugins)
e High performance HTTP / HTTP2 / Quic Proxies and Load Balancers
° Internal GSLB (Proximity aware DNS based load balancing)
e External GeolP / Policy based DNS load balancing
e Solving complex problems at large scale (PCI)
e CSS/HTML/JSON/Image optimizations
e Running an international CDN
e Creating metrics / dashboards / tools to help thousands of developers find

large and small needles in a very large haystack

Slides at bit.ly/nsqslides

