Artificial
Intelligence in
Medicine
AIM1 - Data Harmonization
Joint Analysis Pipeline for Data Harmonization in MRI and PET
A. Retico (PI)
AIM, AIM1 Meeting - Febr 17, 2021 https://agenda.infn.it/event/25883/
AIM1.T1 AIM1.T3
AIM, CSN5, 2019-2021
AIM1 - multi-site data harmonization
data gathered by different sites and/or acquisition systems carries local “fingerprint”, often to the detriment of the much more subtle information of interest.
this problem is akin to the management �of systematic errors
typical application cases: MRI, RX, PET, NPSY tests
Autism Brain Imaging Data Exchange
2226 subjects | |||
1060 ASDs | 1166 TDCs | ||
907 M | 153 F | 879 M | 287 F |
Age at Scan 5 – 64 years | |||
40 different acquisition sites |
AIM, CSN5, 2019-2021
Data normalization strategy already implemented in AIM
[1] Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007 Jan 1;8(1):118-27.
[2] Fortin, J.P.; Parker, D.; Tunç, B.; Watanabe, T.; Elliott, M.A.; Ruparel, K.; Roalf, D.R.; Satterthwaite, T.D.; Gur, R.C.; Gur, R.E.; et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017, 161, 149–170.
3
AIM, CSN5, 2019-2021
Recently…
Dataset of 10477 typical subjects [3-96 years]
ComBat-GAM
Not limited to linear model for age trends, but introduces Generalized Additive Model (GAM)
4
non-linear function of age, sex, TIV
location
scale
AIM, CSN5, 2019-2021
Age trends for selected ROI (Pomponio et al. 2020)
5
AIM, CSN5, 2019-2021
Final considerations from Pomponio et al. 2020
6
AIM, CSN5, 2019-2021
Proposed pipeline for AIM1 joint analysis on Data Harmonization
7
AIM, CSN5, 2019-2021
Proposed pipeline for AIM1 joint analysis on Data Harmonization
Paper outline (“Impact of data harmonization on ML performance in multicenter studies: MRI, fMRI and PET applications”):
8
AIM, CSN5, 2019-2021