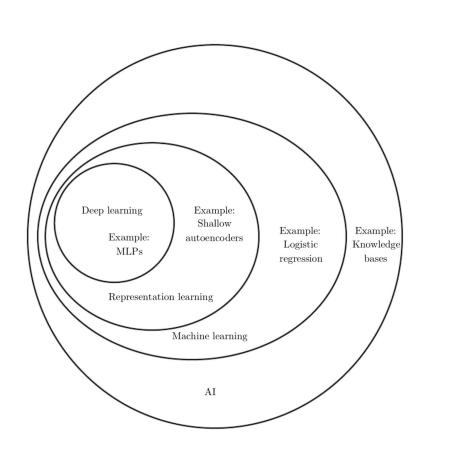
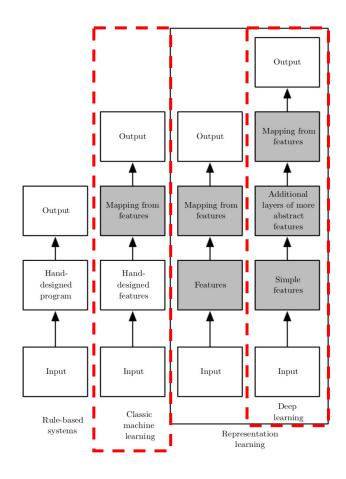


Outline

- 1. Deep learning brief history
- 2. Basic units of neural networks
- 3. popular architectures of neural networks

O1 Brief history Al & Machine Learning & Deep learning



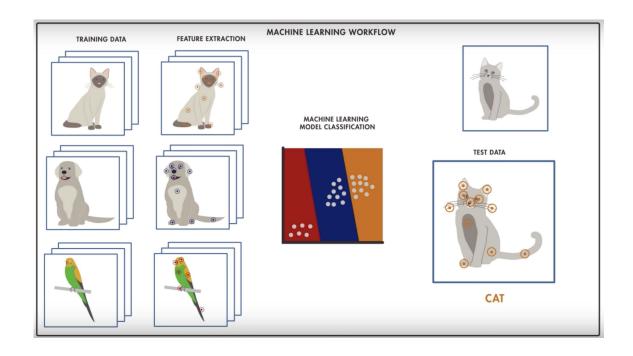


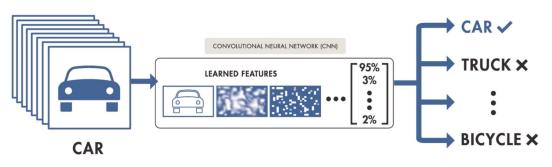
Venn diagram shows inclusion relation among AI, Machine learning and deep learning (Goodfellow et., 2017)

Flowchart shows how different parts of an AI system (Goodfellow et., 2017)

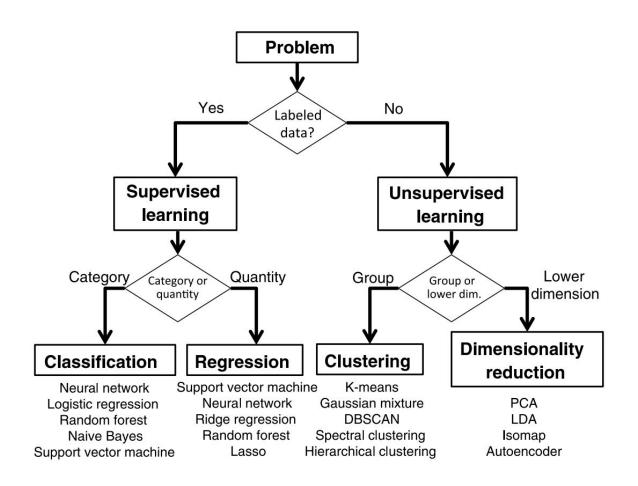
O1 Brief history Machine Learning & Deep learning

One Example

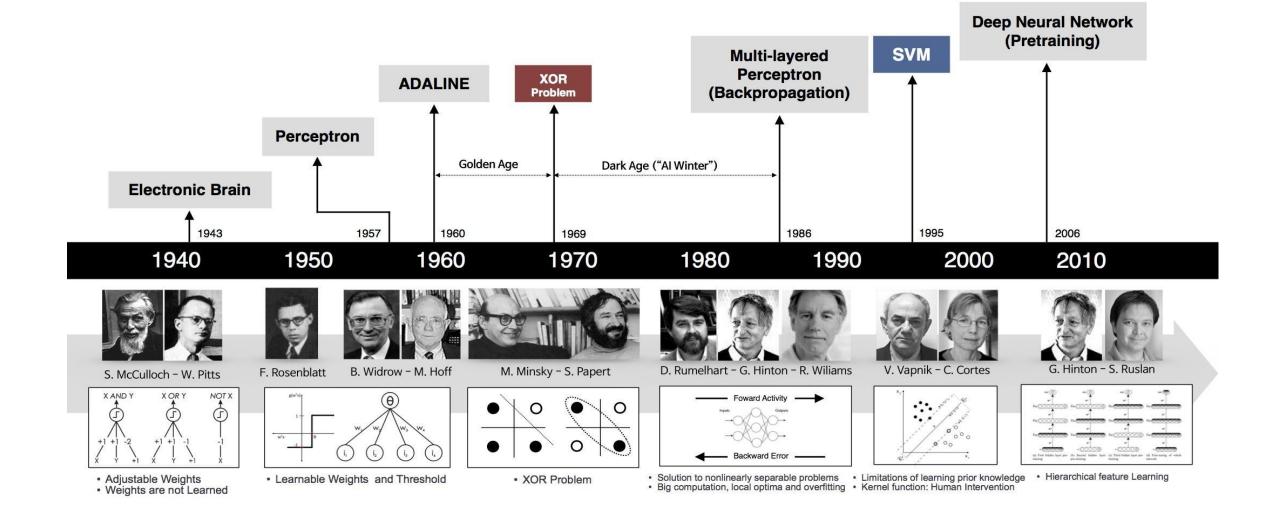




O1 Brief history Machine Learning & Deep learning



Types of machine learning algorithms (Kong et al., 2018)

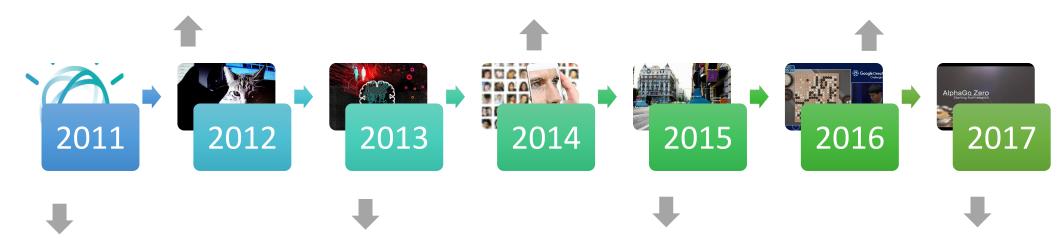


O1 Brief history Deep learning

- Google Brain to find Cat Video
- AlexNet: a deep neural network
- ...

- VGG-16/19: a very deep neural network
- Adam: very efficient optimization method
- GAN: generative adversarial network
 - _ _ _

- Tensorflow
- Real-time object detection
-



- IBM Watson beats Humans in Jeopardy
- Feifei Li launched ImageNet
- •

- Deep RNN: Speech recognition
- Dropout: New regularization
- •

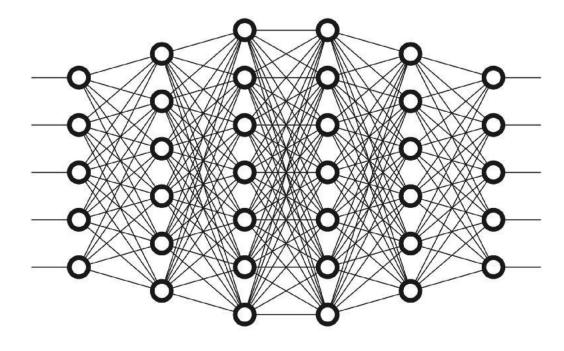
- Deep residual learning
- Batch Normalization
- Convolutional LSTM
- Unet
- Fast R-CNN
- ...

- Alpha Go-zero
- Wasserstein GANs
- Cycle-consistent adversarial network
- ...

Neural Network Basic Units

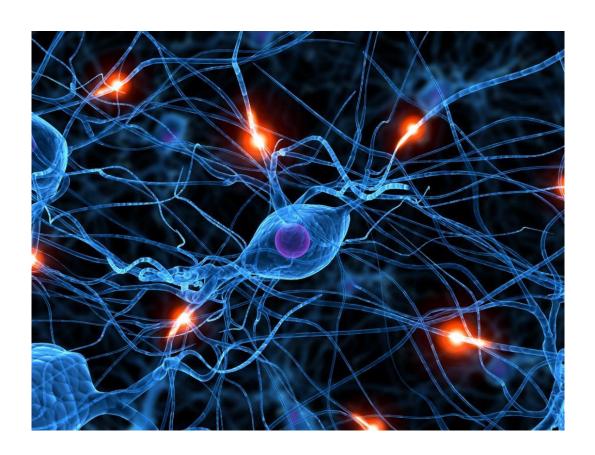
Different Housing materials

Neural Network Basic Units

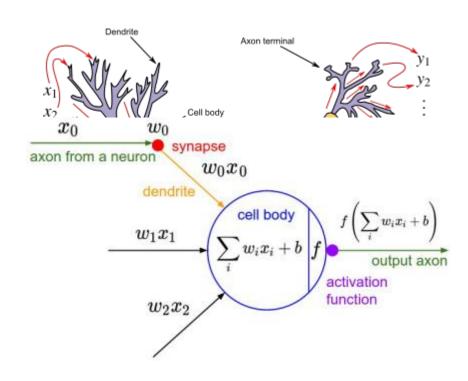


Neural Network Basic Units

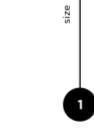
Neural Network Perceptron

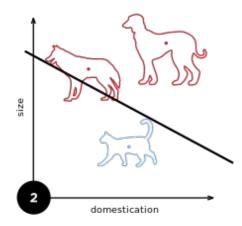


Neurons in brain

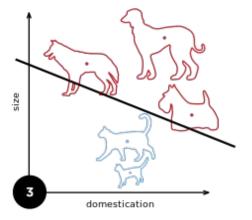


O2 Perceptron

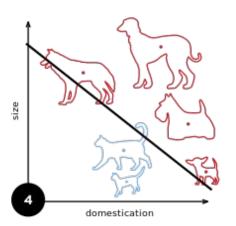




Linear classification

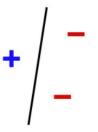


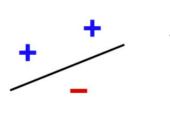
domestication



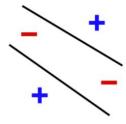
Perceptron

Linearly separable

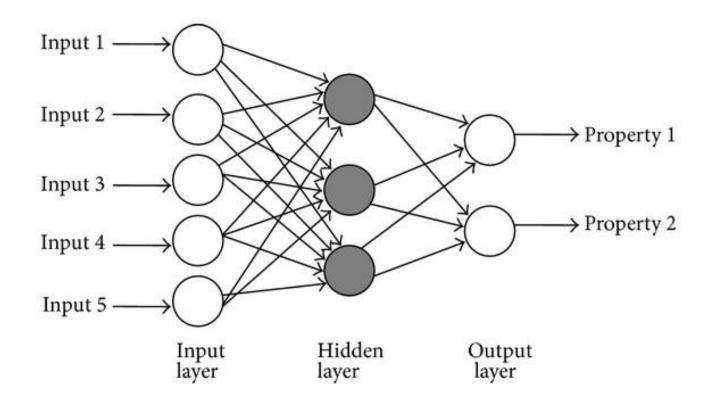




Non-linearly separable (XOR problem)



Multi-layered Perceptron

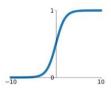


$$\boldsymbol{y} = f(\boldsymbol{x}; \boldsymbol{\theta})$$

Activation function

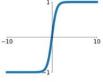
Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



tanh

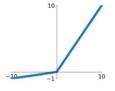
tanh(x)



ReLU

 $\max(0, x)$

Leaky ReLU $\max(0.1x, x)$

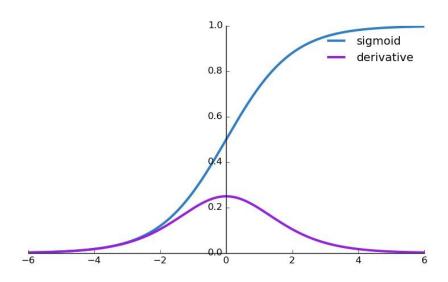


Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid function



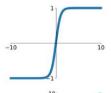
Activation function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

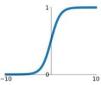
tanh

tanh(x)



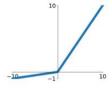
ReLU

 $\max(0, x)$



Leaky ReLU

 $\max(0.1x, x)$

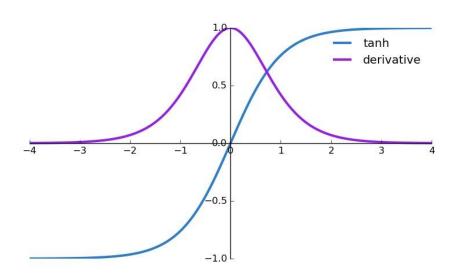


Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

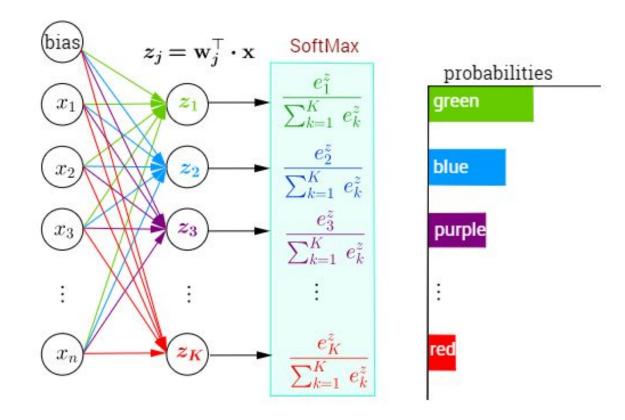
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Tanh function



Only for 2-class classification!

Softmax function for multi-class classification

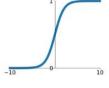


Neural Network

Activation function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



tanh

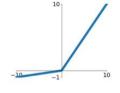
tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$



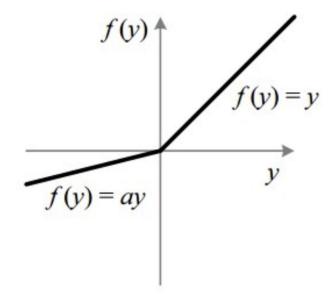
Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

LeaRe Relf Unfation



Neural Network Cost function

Classification problems:

Cross entropy:

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x}).$$

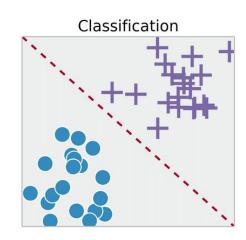
Regression problems:

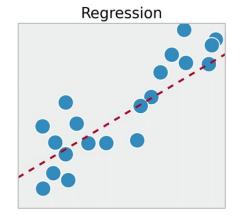
Mean squared error:

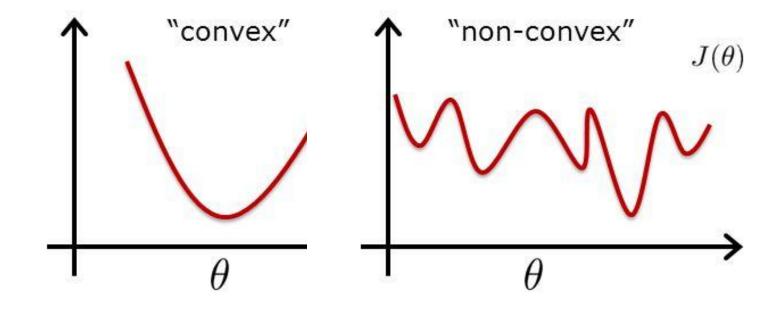
$$f^* = \operatorname*{arg\,min}_f \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p_{\, \mathrm{data}}} || oldsymbol{y} - f(oldsymbol{x}) ||^2$$

Mean absolute error:

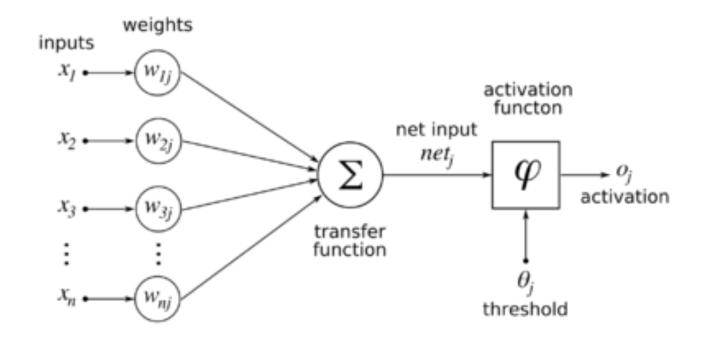
$$f^* = \operatorname*{arg\,min}_f \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p_{\, \mathrm{data}}} || oldsymbol{y} - f(oldsymbol{x}) ||_1$$







Back propagation

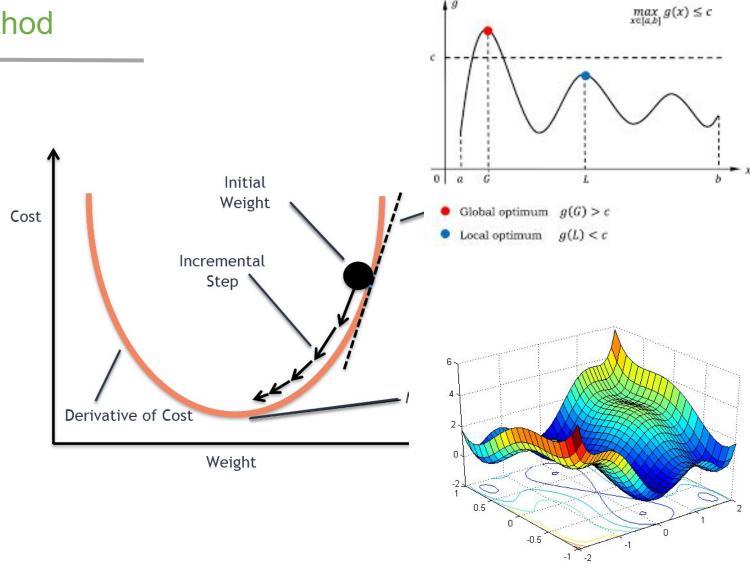


Chain rule:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial \mathrm{net}_j} rac{\partial \mathrm{net}_j}{\partial w_{ij}}$$

$$rac{\partial \mathrm{net}_j}{\partial w_{ij}} = rac{\partial}{\partial w_{ij}} \left(\sum_{k=1}^n w_{kj} o_k
ight) = rac{\partial}{\partial w_{ij}} w_{ij} o_i = o_i.$$

Optimization method



Neural Network

Optimization method

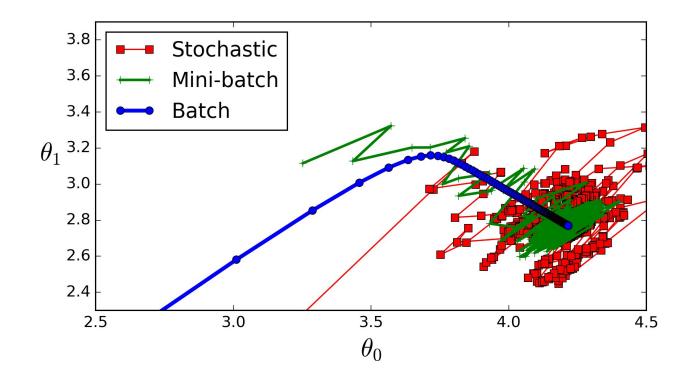
Stochastic gradient descent (SGD)

$$\theta = \theta - \eta \cdot \nabla J(\theta; x(i); y(i))$$

Slow + unstable!

Batch/Minibatch SGD

Difficult to choose learning rate!



Neural Network

Optimization method

Momentum SGD

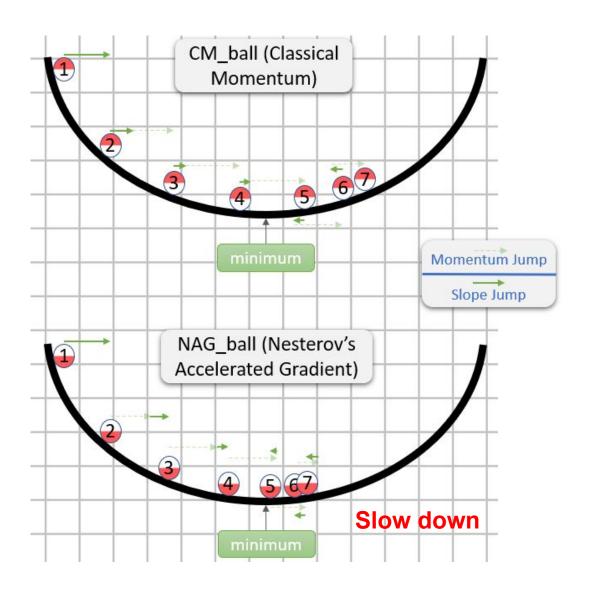
$$V(t) = \gamma V(t-1) + \eta \nabla J(\theta)$$
.

Blindly!

Nesterov accelerated gradient (NAG)

$$V(t) = \gamma V(t-1) + \eta \nabla J(\theta - \gamma V(t-1))$$

Smarter!



Optimization method

Adagrad

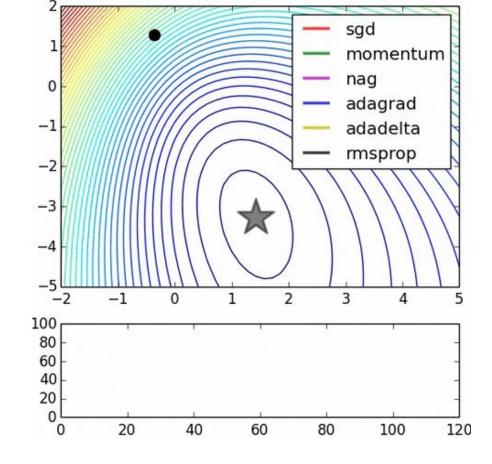
$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{arepsilon I + diag(G_t)}} \cdot g_t, \quad G_t = \sum_{ au=1}^t g_ au g_ au^ op.$$

Allows the learning rate to adapt on the parameters, but learning rate always decreases and decays

Adaptive Moment Estimation (Adam)

$$w_{t} = w_{t-1} - \eta \frac{\hat{m}_{t}}{\sqrt{\hat{v}_{t}} + \epsilon} \qquad \hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}} \qquad \text{Mean of gradients} \qquad 0 \boxed{0} \boxed{20}$$

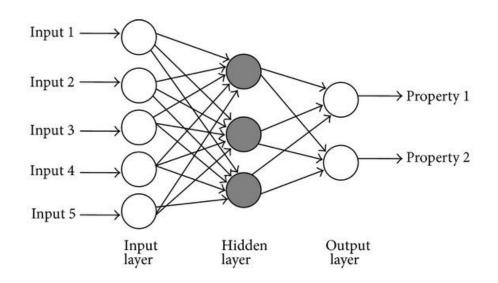
$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}} \qquad \text{Uncentered variances of gradients} \qquad (\text{similar to momentum})$$

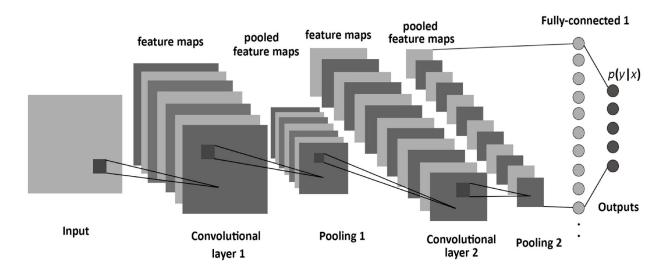


(similar to momentum)

Straightforward to implement/computational efficient

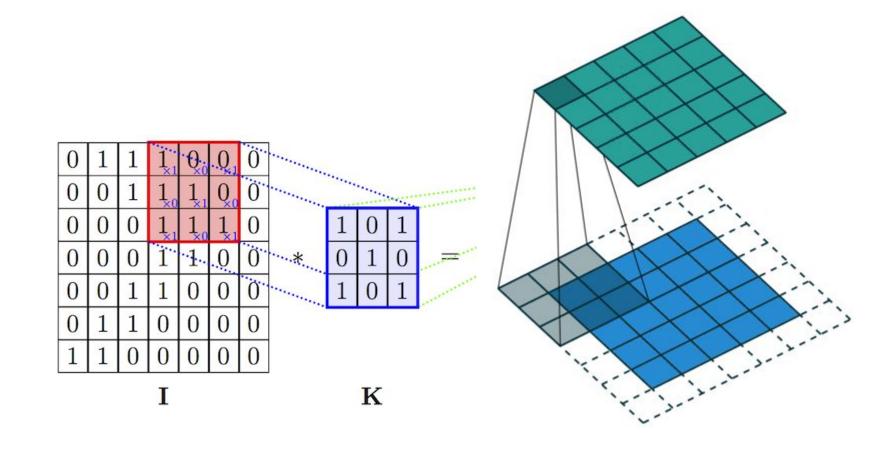
Neural Network Convolution





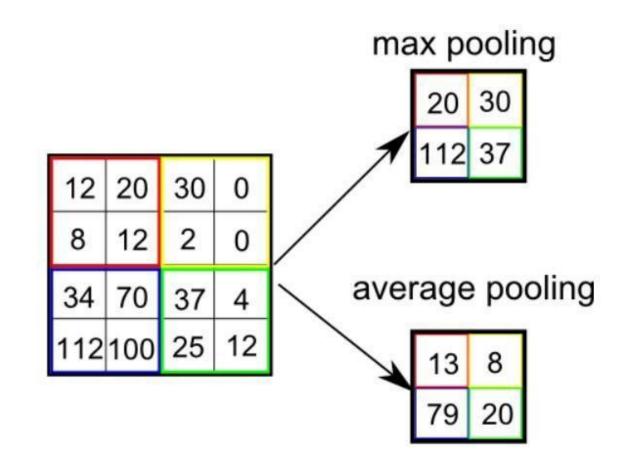
Question: What are differences between above networks?

Neural Network Convolution

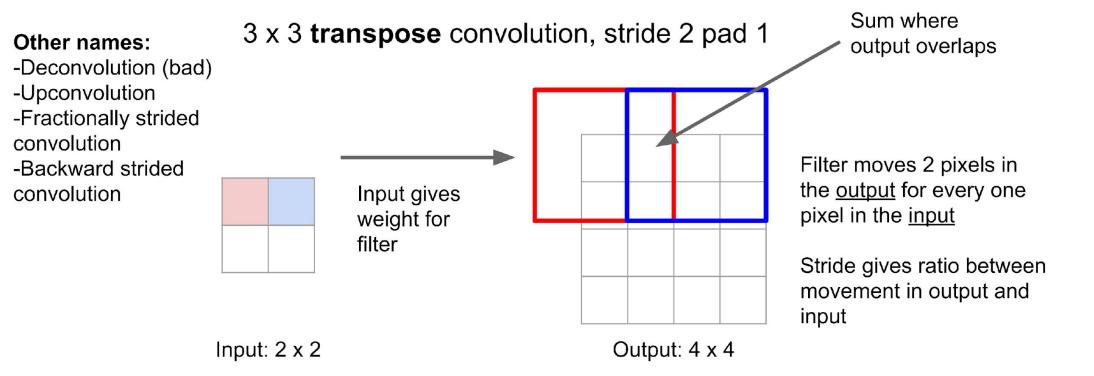


Neural Network Dilated convolution

Pooling/down-sampling



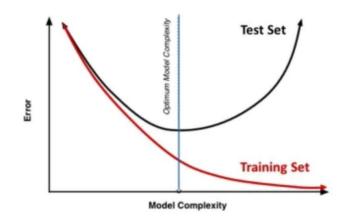
Neural Network Up-sampling



Neural Network

Overfitting & regularization

Training Vs. Test Set Error



Overfitting & regularization

L1 & L2 parameter regularizations

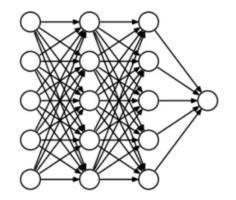
Cost function = Loss +
$$\frac{\lambda}{2m} * \sum ||w||$$

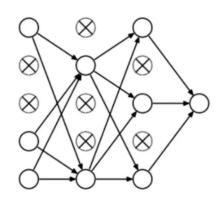
Cost function = Loss + $\frac{\lambda}{2m} * \sum ||w||^2$

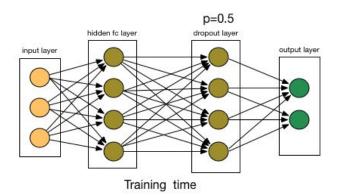
Decay weights to zero

Decay weights close to zero

Dropout







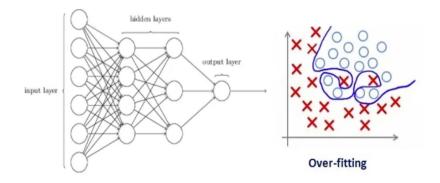
Neural Network

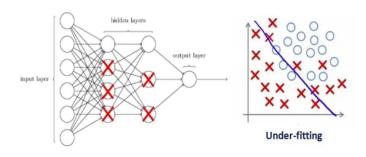
Overfitting & regularization

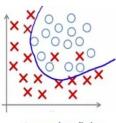
No regularization

Large regularization

Appropriate regularization





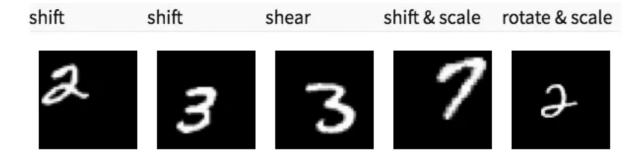


Appropriate-fitting

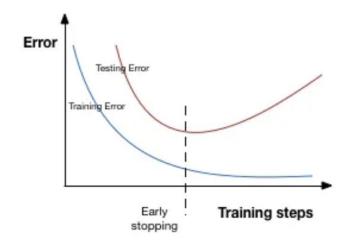
Neural Network

Overfitting & regularization

Data Augmentation

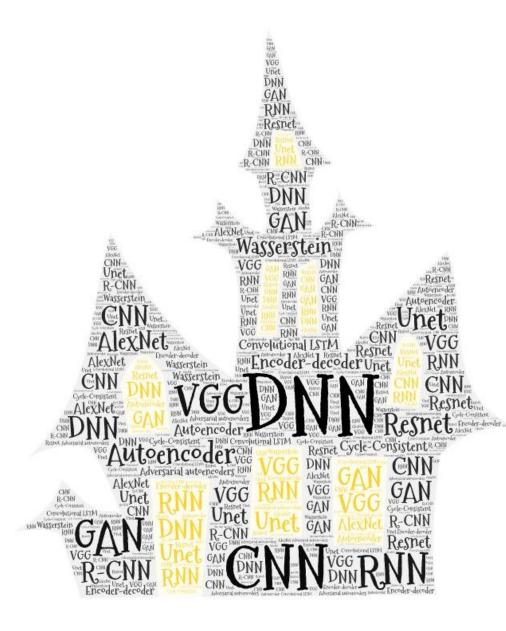


Early stopping



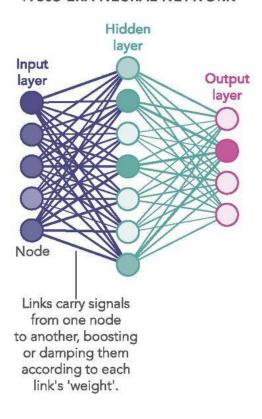
Neural Network

Architecture

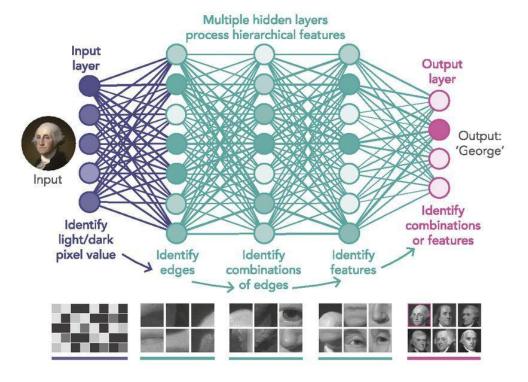


Architecture - DNN

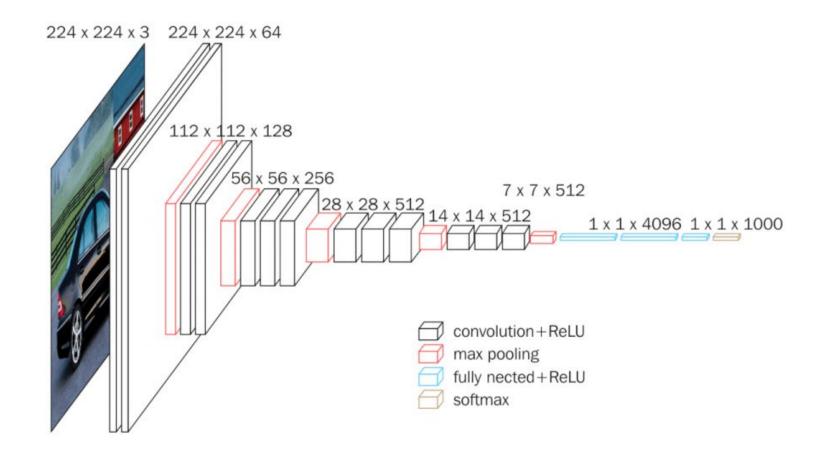
1980S-ERA NEURAL NETWORK



DEEP LEARNING NEURAL NETWORK



Architecture - CNN

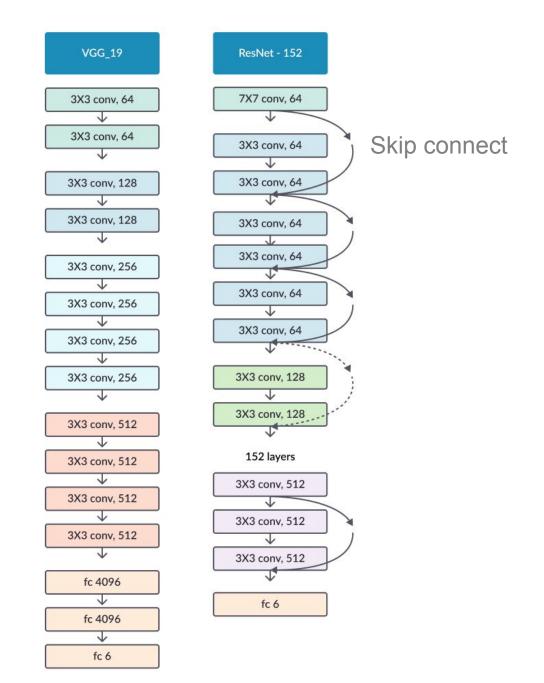


Neural Network

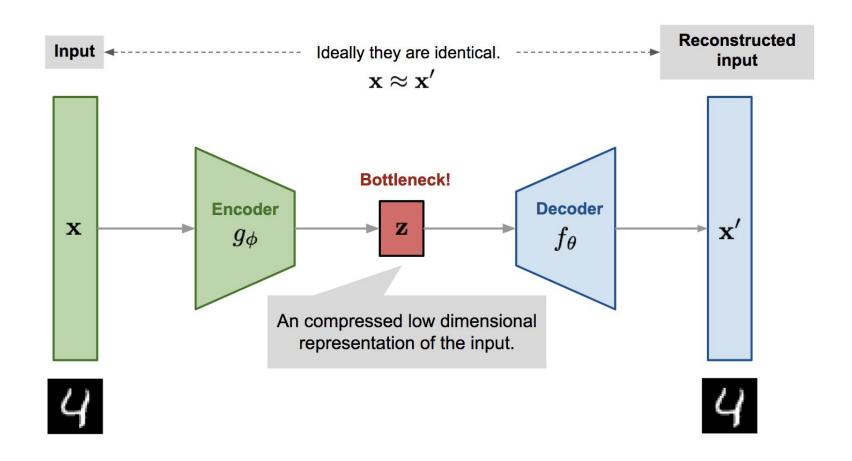
Architecture - ResNet

Advantages:

- 1. To avoid problem of vanishing gradients;
- 2. Effectively simplifies the network and speed learning;
- 3. Less vulnerable to perturbations in data.



Architecture - autoencoder

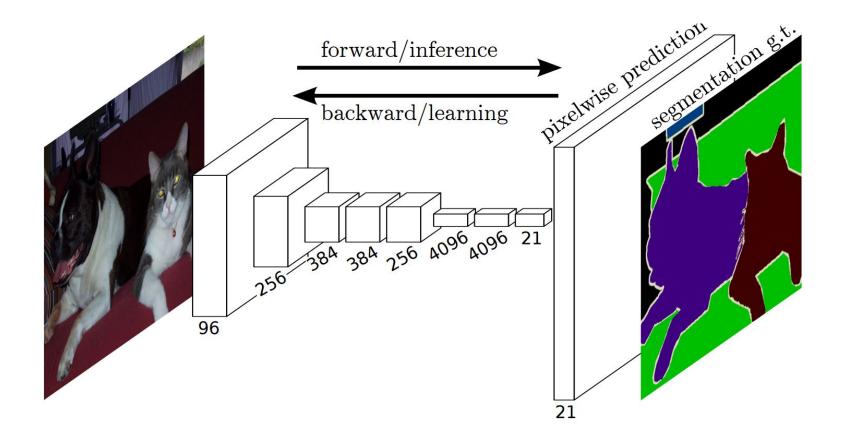


03 Ne

Neural Network

Architecture – encoder-decoder

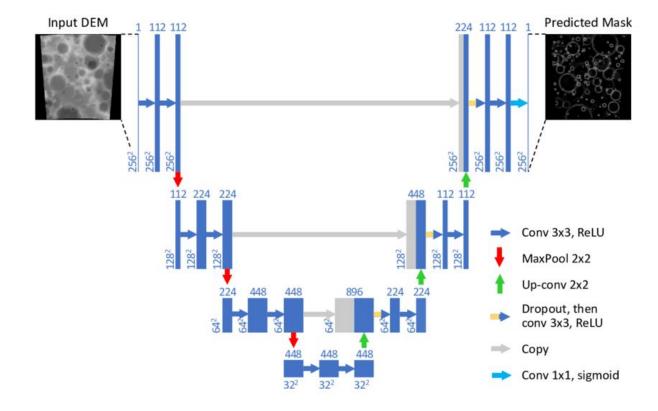
Fully convolutional neural network for Semantic Segmentation



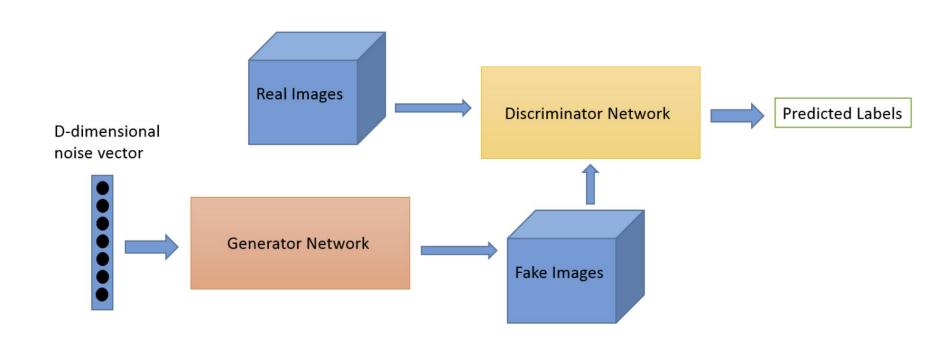
Neural Network

Architecture – encoder-decoder

Unet (Fully convolutional neural network + Skip connection) for biomedical segmentation



Architecture – GAN



PERSPECTIVE

https://doi.org/10.1038/s41467-019-11786-6

OPEN

A critique of pure learning and what artificial neural networks can learn from animal brains

Anthony M. Zador¹

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - 10→10,000 bits per sample

Future

- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

