
Good Software Design

Beyond just delivering functionalities

yangsu.dev

What is considered good

● Readability

● Flexibility

● Etc.

How?

● Understand the context

● Break it down

● Build and Test

● Iterate

Example

● Your manager wants to be alerted via text message when
dogecoin price goes above 1 CAD.

Possible Implementation

def send_dogecoin_alert_to_boss():
 crypto_url = "https://crypto-price.com/doge-coin"
 twilio_client = TwilioClient("secret_sdk_key")
 while True:
 page = requests.get(crypto_url)
 soup = BeautifulSoup(page.content, "html.parser")
 result = soup.find(id="dogecoin")
 doge_coin_price = float(result.text.strip())
 if doge_coin_price > 1:
 twilio_client.send_text_msg("boss-number", "Wake
up, dogecoin is on fire, buy buy buy")
 time.sleep(1)

Possible Iteration

class TwilioMessenger(MessengerInterface):
 def send(self, number, msg):

 …
 return self.client.send_text_message(number, msg)
class HTMLCryptoPriceFinder(CryptoPriceFinderInterface):
 def get_price(self, abbreviation):

 …
 return float(results.text.strip())

def send_doge_coin_alert_to_boss(finder:
CryptoPriceFinderInterface, messenger: MessengerInterface):
 while True:
 if finder.get_price('dogecoin') > 1:
 messenger.send("boss-number", "Wake up, dogecoin is on
fire, buy buy buy")
 time.sleep(1)

In conclusion

Good design is iterative and relative

