

Final Presentation : Diagnosing Cervical Insufficiency

Group 17: Tista Mandal, Kristina Dalton and Abir Hamdaoui

Our Clients:

Erica Marquez Biomedical Engineering Ph.D. candidate at Washington University in St. Louis.

Rod Keesey Biomedical Engineering Ph.D. candidate at Washington University in St. Louis.

Problem: Cervical Insufficiency (CI) Diagnosis

Cervical Insufficiency (CI): Mechanical softening of cervix during 1st/2nd trimester

- Causes early reduction in stiffness
 - ~1% of all births
- Results in preterm birth or miscarriage
 - Birth prior to 37 weeks gestation

Garcia et. al 2022

Current care

Diagnosis:

- Digital palpation
 - Qualitative, subjective, inaccurate
- Transvaginal ultrasound
 - Requires the visual effacement of the cervix and is thus reactive
- Both rely on **macroscale** changes to the cervical tissue

Treatment:

- Cerclage
 - Sewing shut of the cervix
- Progesterone
 - Hormonal treatment

Need Statement

There is a need for the development of a device that

clinicians can use to detect indicators of cervical stiffness

changes to diagnose cervical insufficiency, in order to

prevent preterm birth and miscarriage in pregnant patients.

Our solution

A force-sensing probe that measures changes in cervical tissue via spherical indentation at any point in gestation

Prototype Qualities:

- 10N load cell (reads 0.5 kPa to 3000 kPa)
- Customizable insertion probe
- Self-contained microprocessor
- Linear actuator (accuracy to 0.1 mm)
- Temporal resolution 80 Hz

Our solution

A force-sensing probe that measures changes in cervical tissue via spherical indentation at any point in gestation

Verification and Results

Dimensions and weight

The device meets the metrics:

- Mass of 1.4 Kg
- Portable and easy to handle

Dimensions and weight

The device meets the metrics:

- Mass of 1.4 Kg
- Portable and easy to handle
- Length retracts to 8.0 cm and extends to 8.5 cm : Fits the vaginal canal
- Diameter of 1.991 cm

Biocompatibility & Sterilizability

- The external housing of the device, handle, and probe are made from M58 Gray Tough ABS Like 3D Printer Resin : Robust and rigid, was recommended by client but NOT FDA approved for gynecologist devices.
- No current list ways to sterilize the M58 Gray Tough ABS like 3D Printer Resin.

Future iterations : Using materials like stainless steel with polypropylene external housing or having plastic disposable probe and external housing

Stiffness Accuracy

- The device takes low stiffness measurements within the cervical stiffness ranges as indicated in the specifications (between 5 kPa to 235 kPa).
- The device accuracy does NOT meet the ±0.1 mN range due to the sensitivity of the load cell due to external forces

Future iterations : Creating a robot arm to decrease noises and decreasing the velocity of the linear actuator.

Gel	Average Device Stiffness (kPa)	Instron Stiffness Measurement (kPa)
0.8%	39.431979	11.33287
1%	59.399	34.66836
1.5%	85.725454	61.12199

Time efficiency

The device meets the metric of reporting a stiffness within 60 seconds:

• User can get a stiffness reading approximately 5 seconds

Cost

The device meets the metric :

• Device cost was less than 500 \$

Part	Price
3D Printer Resin	\$55.00
Force Detecting Load Cell	\$142.38
Linear Actuator Motor	\$80.
Load Cell Amplifier	\$9.21
Raspberry Pi Pico Computer	\$11.99
Linear Rail	\$12.39
Power Cord	\$11.99
Power Adaptor	\$5.49
Control Board	\$20.00
Linear Ball Bearing	\$27.54
100 Ohm Resistors	\$5.51
Screws of various sizes	\$39.45
Jumper wires	\$11.99
Total	\$440.20

Validation and Results

Medical Expert Test and Feedback

- Assistant OB/GYN Professor at Washington University School of Medicine
- Clinical Researcher in Center for Reproductive Health Sciences

<u>Specification</u>	<u>Rating (0-10)</u>
Easy to control the probe	7
Heaviness of the device	6
Time efficiency when taking measurements	10
Ability to produce accurate stiffness values	2
Ability to angle the device within the vaginal canal	6

Dr. Peinan Zhao

Client Satisfaction and Feedback

- BME PhD Candidate at Washington University and Sling Health Project Lead
- Satisfied with current prototype as proof-of-concept for cervical stiffness detector
 - made aware of accuracy concerns
 - intends to continue reiterating device and software to improve stiffness detection ability

Sling Health National Demo Day

Conclusion

- We believe our device is a promising start on an innovative solution for diagnosing cervical insufficiency in a quantitative manner
 - All device specifications were NOT met, but can be improved upon in future iterations
- Ethical Considerations:
 - Potential pain to patient or risks to pregnancy must be considered at every stage of design and reiteration
- What we learned:
 - 3D printing and CAD modeling
 - Communication and teamwork
 - Networking and collaboration with clients
- Intellectual Property:
 - Spherical cervical indenter is novel idea
 - Provisional Patent filed on 12/4/23

Device Demonstration

Thank You!

References

- Cervical incompetence. (n.d.). Retrieved April 21, 2024, from
 <u>https://www.invitra.com/en/recurrent-pregnancy-loss/types-of-cervical-insufficiency/</u>
- Cervical Cerclage: Purpose, Procedure, Risks & Results. (n.d.). Cleveland Clinic. Retrieved April 21, 2024, from <u>https://my.clevelandclinic.org/health/treatments/17970-cervical-cerclage</u>
- Hee, L., Liao, D., Sandager, P., Gregersen, H., & Uldbjerg, N. (2014). Cervical stiffness evaluated in vivo by endoflip in pregnant women. *PloS one*, *9*(3), e91121. <u>https://doi.org/10.1371/journal.pone.0091121</u>
- *Peinan Zhao*. (n.d.). Research Profiles at Washington University School of Medicine. Retrieved April 21, 2024, from <u>https://profiles.wustl.edu/en/persons/peinan-zhao</u>
- Brown, R., Gagnon, R., & Delisle, M.-F. (2019). No. 373-Cervical Insufficiency and Cervical Cerclage. Journal of Obstetrics and Gynaecology Canada, 41(2), 233–247. <u>https://doi.org/10.1016/j.jogc.2018.08.009</u>