Foundation of Inference: Hypothesis testing

a) Introduction

Statistical inference is primarily concerned with understanding and quantifying the uncertainty of parameter estimates.

Population vs sample

 Sometimes the dataset at hand represents the **population** for the entire research question. Our data is usually a (hopefully)
representative subset (sample)
of a larger population

How different is one dataset from another?

Notation for samples and population

- p population proportion
- μ population mean

- \hat{p} and $\mathbf{p'}$ sample proportion
- ullet and ${f x}'$ sample mean

Proportion of students who prefer reading books on screen

- What are the variables?
- What data type?
- Levels of the variables?
- What is the explanatory variable?

- Variables and levels:
 - o side of the room: left, right
 - o **prefer to read books on screen**: yes; no
- Assumption about the relationship??
 - A: independent?
 - o B: dependent?

Studying randomness is a key focus of statistics.

Three different approaches for quantifying the **variability inherent in data**:

- 1. (Randomization) 🤪
- 2. (bootstrapping) 👼 🥁
- 3. mathematical models 1+1=2

Resources

The content of this lecture is mainly based on the excellent book (can be accessed for free)

- "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin (2021)

https://openintro-ims.netlify.app/index.html