Multi-Layer RT Modeling� �: Clear-Sky, Wildfire, Geo-Engineering Methods를 중심으로
오유신, 이윤성, 변형준, 강동원
1. Modeling
- Assumptions
- RT Equations
- Temperature Change Rate Differential Equations
- Finite Difference Method (FDM | 유한차분법)
2. Scenario
- Two-layer
- Clear Sky
- Black Carbon from Wildfires
- Artificial Emission of Black Carbon
3. Results
목차
1. Modeling-Assumptions
1. Modeling-Assumptions
1. Modeling-Assumptions
1. Modeling-RT Equations: Atmosphere
surface
(j)th layer
(j+1)th layer
(j-1)th layer
1. Modeling-RT Equations: Atmosphere
surface
(j)th layer
(j+1)th layer
(j-1)th layer
지표로부터 반사된 직후
지표에서 방출된 lw flux
1. Modeling-RT Equations: Surface
surface
1. Temperature Change Rate Differential Equations: Atmosphere
surface
(j)th layer
(j+1)th layer
(j-1)th layer
Thermodynamic Equation of Atmosphere �(Unit Mass)
… Ideal Gas Law
1. Temperature Change Rate Differential Equations: Surface
surface
Finite Difference Method (FDM, 유한차분법)
x
x
〈연속적인 미분방정식〉을 〈단순 산술 방정식〉으로 근사하여(=차분화하여) 초기 조건이 주어졌을 때 미분방정식의 근사해를 계산하는 방법
Finite Difference Method (FDM, 유한차분법)
〈연속적인 미분방정식〉을 〈단순 산술 방정식〉으로 근사하여(=차분화하여) 초기 조건이 주어졌을 때 미분방정식의 근사해를 계산하는 방법
…
x
x
x
x
x
x
x
x
x
x
x
Forward Euler Method
Backward Euler Method, Trapezoidal Method, Runge-Kutta Method (4th order)
SMART (Single-column Multi-layered Atmospheric Radiative Transfer) Model
Open to the Public via Github
Scenario(1) Clear Sky
Altitude(km) | Temperature(K) | Density(kg/m3) | Longwave Absorptivity | Shortwave Absorptivity |
0~5 | 271.9 | 0.980558 | 0.68 | 0.1119 |
5~10 | 239.4 | 0.574412 | 0.43 | 0.0262 |
10~15 | 219.9 | 0.303191 | 0.2 | 0.00636 |
15~20 | 216.65 | 0.140854 | 0.1 | 0.00632 |
20~25 | 219.15 | 0.063750 | 0.06 | 0.00628 |
25~30 | 224.15 | 0.028739 | 0.03 | 0.00736 |
30~35 | 231.85 | 0.013113 | 0.02 | 0.00731 |
35~40 | 244.05 | 0.006032 | 0.01 | 0.00725 |
40~45 | 258.05 | 0.002866 | 0.005 | 0.00720 |
45~50 | 267.85 | 0.001429 | 0.0025 | 0.00715 |
Properties of the clear sky
Miskolczi, (2010)
Ollila, A. (2015)
Scenario(2) Black Carbon from Wildfires
Altitude(km) | BC Concentration (No Fire) (ng/m³) | BC Concentration (Post-Fire) (ng/m³) | Shortwave Absorptivity (No Fire) | Shortwave Absorptivity (Post-Fire) |
0~5 | 200 | 400 | 0.123371 | 0.134693 |
5~10 | 117.1601 | 234.3203 | 0.033588 | 0.040919 |
10~15 | 61.8404 | 1236.808 | 0.010346 | 0.083115 |
15~20 | 28.72945 | 143.6472 | 0.008174 | 0.015555 |
20~25 | 13.00287 | 26.00574 | 0.00712 | 0.007958 |
25~30 | 5.861734 | 11.72347 | 0.007738 | 0.008116 |
30~35 | 2.674581 | 5.349162 | 0.007483 | 0.007655 |
35~40 | 1.230415 | 1.230415 | 0.007329 | 0.007329 |
40~45 | 0.584596 | 0.584596 | 0.007238 | 0.007238 |
45~50 | 0.29155 | 0.29155 | 0.007169 | 0.007169 |
Ohata, S., et al. (2021)
Popovicheva, O. B., et al. (2022).
Scenario(2) Black Carbon from Wildfires
Phase 1. 산불 발생 직후
Phase 2. 산불 발생 후 오랜 시간 경과
Altitude(km) | Shortwave Absorptivity (Post-Fire) |
0~5 | 0.134693 |
5~10 | 0.040919 |
10~15 | 0.083115 |
15~20 | 0.015555 |
20~25 | 0.007958 |
25~30 | 0.008116 |
30~35 | 0.007655 |
35~40 | 0.007329 |
40~45 | 0.007238 |
45~50 | 0.007169 |
Altitude(km) | Shortwave Absorptivity (Long After Fire) |
0~5 | 0.12337 |
5~10 | 0.03359 |
10~15 | 0.083115 |
15~20 | 0.015555 |
20~25 | 0.007958 |
25~30 | 0.008116 |
30~35 | 0.007655 |
35~40 | 0.007329 |
40~45 | 0.007238 |
45~50 | 0.007169 |
Shortwave Absorptivity
(No Fire)
Scenario(2) Black Carbon from Wildfires
(1) A = 0.3 (average albedo of Earth)
(2) A = 0.2 (concrete albedo)
(3) A = 0.12 (woodland albedo)
(4) A = 0.08 (oceans albedo)
(5) A = 0
Phase 1. 산불 발생 직후
(1) A = 0.3 (average albedo of Earth)
(2) A = 0.2 (concrete albedo)
(3) A = 0.12 (woodland albedo)
(4) A = 0.08 (oceans albedo)
(5) A = 0
Phase 2. 산불 발생 후 오랜 시간 경과
Albedo values of Different Surface Types
Scenario(3) Artificial Emission of Black Carbon
0
10km
15km
61.84
ng/m3
309.202
ng/m3
618.404ng/m3
5배
10배
n배
?
Conclusion(1) Model Verification-2 Layer Model
Conclusion(1) 모델 검증-Clear Sky
Conclusion(2) Black Carbon From Wildfires
1. 대류권 계면에서 온도가 20K 가량 크게 증가
-> 새로운 역전층
2. 지표 온도가 2K가량 감소
Conclusion(2) Black Carbon From Wildfires
1. 역전층은 조건에 관계없이 형성
2. 알베도 감소에 따른 경향성의 차이
하부-온도 증가
상부-온도 감소
A. 지표 알베도 B. 산불 후 시간
Conclusion(2) Black Carbon From Wildfires
Conclusion(2) Black Carbon From Wildfires
Conclusion(3) Artificial Emission of Black Carbon
Conclusion(3) Artificial Emission of Black Carbon
2,236,800,000Kg
=
=
X 6500000
X 25000
참고자료
Miskolczi, F. (2010). Greenhouse Effect and the IR Radiative Structure of the Earth's Atmosphere. *International Journal of Environmental Research and Public Health, 7*(1), 1-x. https://doi.org/10.3390/ijerph70x000x
Ollila, A. (2015). Clear sky absorption of solar radiation by the average global atmosphere. Journal of Earth Sciences and Geotechnical Engineering, 5(14), 19-34. ISSN: 1792-9040 (print), 1792-9660 (online). Scienpress Ltd.
Popovicheva, O. B., Evangeliou, N., Kobelev, V. O., Chichaeva, M. A., Eleftheriadis, K., Gregorič, A., & Kasimov, N. S. (2022). Siberian Arctic black carbon: Gas flaring and wildfire impact. Atmospheric Chemistry and Physics, 22(10), 5983-6004. https://doi.org/10.5194/acp-22-5983-2022
Veira, A., G. Lasslop, and S. Kloster (2016), Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099, J. Geophys. Res. Atmos., 121, 3195–3223, doi:10.1002/2015JD024142.