1 of 27

Multi-Layer RT Modeling� : Clear-Sky, Wildfire, Geo-Engineering Methods를 중심으로

오유신, 이윤성, 변형준, 강동원

2 of 27

1. Modeling

- Assumptions

- RT Equations

- Temperature Change Rate Differential Equations

- Finite Difference Method (FDM | 유한차분법)

2. Scenario

- Two-layer

- Clear Sky

- Black Carbon from Wildfires

- Artificial Emission of Black Carbon

3. Results

목차

3 of 27

  1. Schwartzchild’s Equation (대기에서 지표에서의 SW 반사를 제외한 그 어떤 종류의 반사도 일어나지 않는다고 가정)
  2. 대기는 수평 운동하지 않음�→ 따라서 대기에서 잠열 과정은 일체 고려하지 않고 오직 복사만을 대기와 지표 온도를 바꾸는 유일 Forcing으로 고려�→ 대기의 수직 운동의 경우 ‘단열 과정’은 고려하되 속도는 충분히 느리다고 가정
  3. 기온이 변화하더라도 각 층에서의 대기 밀도는 변화하지 않는다고 가정
  4. Plane-Parallel Approximation

1. Modeling-Assumptions

4 of 27

  •  

1. Modeling-Assumptions

5 of 27

  •  

1. Modeling-Assumptions

6 of 27

1. Modeling-RT Equations: Atmosphere

surface

(j)th layer

(j+1)th layer

(j-1)th layer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 of 27

1. Modeling-RT Equations: Atmosphere

surface

(j)th layer

(j+1)th layer

(j-1)th layer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

지표로부터 반사된 직후

지표에서 방출된 lw flux

 

8 of 27

1. Modeling-RT Equations: Surface

surface

 

 

 

 

 

 

 

 

 

 

 

9 of 27

1. Temperature Change Rate Differential Equations: Atmosphere

surface

(j)th layer

(j+1)th layer

(j-1)th layer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermodynamic Equation of Atmosphere �(Unit Mass)

 

 

 

 

… Ideal Gas Law

10 of 27

1. Temperature Change Rate Differential Equations: Surface

 

 

 

 

 

surface

 

 

 

 

 

11 of 27

Finite Difference Method (FDM, 유한차분법)

 

 

 

 

 

 

 

x

x

 

 

 

 

〈연속적인 미분방정식〉을 〈단순 산술 방정식〉으로 근사하여(=차분화하여) 초기 조건이 주어졌을 때 미분방정식의 근사해를 계산하는 방법

12 of 27

Finite Difference Method (FDM, 유한차분법)

〈연속적인 미분방정식〉을 〈단순 산술 방정식〉으로 근사하여(=차분화하여) 초기 조건이 주어졌을 때 미분방정식의 근사해를 계산하는 방법

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

 

x

x

x

x

x

x

x

x

x

Forward Euler Method

Backward Euler Method, Trapezoidal Method, Runge-Kutta Method (4th order)

13 of 27

SMART (Single-column Multi-layered Atmospheric Radiative Transfer) Model

14 of 27

Scenario(1) Clear Sky

Altitude(km)

Temperature(K)

Density(kg/m3)

Longwave

Absorptivity

Shortwave

Absorptivity

0~5

271.9

0.980558

0.68

0.1119

5~10

239.4

0.574412

0.43

0.0262

10~15

219.9

0.303191

0.2

0.00636

15~20

216.65

0.140854

0.1

0.00632

20~25

219.15

0.063750

0.06

0.00628

25~30

224.15

0.028739

0.03

0.00736

30~35

231.85

0.013113

0.02

0.00731

35~40

244.05

0.006032

0.01

0.00725

40~45

258.05

0.002866

0.005

0.00720

45~50

267.85

0.001429

0.0025

0.00715

Properties of the clear sky

Miskolczi, (2010)

Ollila, A. (2015)

15 of 27

Scenario(2) Black Carbon from Wildfires

Altitude(km)

BC Concentration (No Fire)

(ng/m³)

BC Concentration (Post-Fire) (ng/m³)

Shortwave Absorptivity

(No Fire)

Shortwave Absorptivity

(Post-Fire)

0~5

200

400

0.123371

0.134693

5~10

117.1601

234.3203

0.033588

0.040919

10~15

61.8404

1236.808

0.010346

0.083115

15~20

28.72945

143.6472

0.008174

0.015555

20~25

13.00287

26.00574

0.00712

0.007958

25~30

5.861734

11.72347

0.007738

0.008116

30~35

2.674581

5.349162

0.007483

0.007655

35~40

1.230415

1.230415

0.007329

0.007329

40~45

0.584596

0.584596

0.007238

0.007238

45~50

0.29155

0.29155

0.007169

0.007169

Ohata, S., et al. (2021)

Popovicheva, O. B., et al. (2022).

16 of 27

Scenario(2) Black Carbon from Wildfires

Phase 1. 산불 발생 직후

Phase 2. 산불 발생 후 오랜 시간 경과

Altitude(km)

Shortwave Absorptivity

(Post-Fire)

0~5

0.134693

5~10

0.040919

10~15

0.083115

15~20

0.015555

20~25

0.007958

25~30

0.008116

30~35

0.007655

35~40

0.007329

40~45

0.007238

45~50

0.007169

Altitude(km)

Shortwave Absorptivity

(Long After Fire)

0~5

0.12337

5~10

0.03359

10~15

0.083115

15~20

0.015555

20~25

0.007958

25~30

0.008116

30~35

0.007655

35~40

0.007329

40~45

0.007238

45~50

0.007169

Shortwave Absorptivity

(No Fire)

17 of 27

Scenario(2) Black Carbon from Wildfires

(1) A = 0.3 (average albedo of Earth)

(2) A = 0.2 (concrete albedo)

(3) A = 0.12 (woodland albedo)

(4) A = 0.08 (oceans albedo)

(5) A = 0

Phase 1. 산불 발생 직후

(1) A = 0.3 (average albedo of Earth)

(2) A = 0.2 (concrete albedo)

(3) A = 0.12 (woodland albedo)

(4) A = 0.08 (oceans albedo)

(5) A = 0

Phase 2. 산불 발생 후 오랜 시간 경과

Albedo values of Different Surface Types

18 of 27

Scenario(3) Artificial Emission of Black Carbon

0

10km

15km

61.84

ng/m3

309.202

ng/m3

618.404ng/m3

 

5배

10배

n배

?

19 of 27

Conclusion(1) Model Verification-2 Layer Model

20 of 27

Conclusion(1) 모델 검증-Clear Sky

21 of 27

Conclusion(2) Black Carbon From Wildfires

1. 대류권 계면에서 온도가 20K 가량 크게 증가

-> 새로운 역전층

2. 지표 온도가 2K가량 감소

22 of 27

Conclusion(2) Black Carbon From Wildfires

1. 역전층은 조건에 관계없이 형성

2. 알베도 감소에 따른 경향성의 차이

하부-온도 증가

상부-온도 감소

A. 지표 알베도 B. 산불 후 시간

23 of 27

Conclusion(2) Black Carbon From Wildfires

24 of 27

Conclusion(2) Black Carbon From Wildfires

25 of 27

Conclusion(3) Artificial Emission of Black Carbon

 

26 of 27

Conclusion(3) Artificial Emission of Black Carbon

2,236,800,000Kg

=

=

X 6500000

X 25000

27 of 27

참고자료

Miskolczi, F. (2010). Greenhouse Effect and the IR Radiative Structure of the Earth's Atmosphere. *International Journal of Environmental Research and Public Health, 7*(1), 1-x. https://doi.org/10.3390/ijerph70x000x

Ollila, A. (2015). Clear sky absorption of solar radiation by the average global atmosphere. Journal of Earth Sciences and Geotechnical Engineering, 5(14), 19-34. ISSN: 1792-9040 (print), 1792-9660 (online). Scienpress Ltd.

Popovicheva, O. B., Evangeliou, N., Kobelev, V. O., Chichaeva, M. A., Eleftheriadis, K., Gregorič, A., & Kasimov, N. S. (2022). Siberian Arctic black carbon: Gas flaring and wildfire impact. Atmospheric Chemistry and Physics, 22(10), 5983-6004. https://doi.org/10.5194/acp-22-5983-2022

Veira, A., G. Lasslop, and S. Kloster (2016), Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099, J. Geophys. Res. Atmos., 121, 3195–3223, doi:10.1002/2015JD024142.