
Introduction to Gentoo Linux
and the Portage Package Manager
Guilherme Amadio



Agenda

▶ Introduction to Gentoo

▶ Portage package manager
● Main features and concepts

● Ebuild scripts

▶ Gentoo Prefix project

▶ Gentoo and HEP software

▶ Conclusions



Introduction and brief history of Gentoo

▶ Gentoo is the name of a penguin species
▶ Founded by Daniel Robbins as Enoch Linux (12/1999)
▶ Gentoo Linux 1.0 was released on 31/03/2002
▶ Gentoo Foundation created in 2004, holds all copyright
▶ Council of 7 elected members for

technical oversight and policy
▶ Source-based distribution with wide

support (x86, ARM, Mac OS X, etc)
▶ Website: www.gentoo.org Gentoo penguin (source: Wikipedia)

http://www.gentoo.org
https://en.wikipedia.org/wiki/Gentoo_penguin


Portage’s main features

▶ Written in Python, based on FreeBSD’s ports system
▶ Packages are special shell scripts called ebuilds
▶ Extensive options for dependency management
▶ Highly flexible configuration/customization
▶ Parallel and distributed builds (with distcc)
▶ Multiple installed versions of the same package
▶ Easy to support live packaging from git/svn/hg repos



Portage’s advantages

▶ Portage is a mature solution (15+ years development)
● Formal, versioned Package Manager Specification (PMS)
● Used by Google’s Chrome OS and CoreOS

▶ More than 19,000 currently available packages, 
including many HEP packages (ROOT, Geant4, etc)

▶ Leverage work done by other volunteer developers
▶ Extensive documentation at devmanual.gentoo.org
▶ Support for many different hardware architectures

https://wiki.gentoo.org/wiki/Project:Package_Manager_Specification
https://www.chromium.org/chromium-os/packages/portage
https://coreos.com
https://packages.gentoo.org
https://devmanual.gentoo.org


Portage’s disadvantages

▶ Portage is not designed to install many different 
independent package trees, although it is possible

▶ Performance for dependency calculation is not great
▶ Other operating systems (e.g., Mac OS X, etc) are not 

as well supported as Linux
▶ It can be cumbersome to support compilers other than 

GCC, ICC, and LLVM/Clang. 



Important Gentoo and Portage Concepts

▶ Package manager specification (EAPI)
▶ Package tree (holds ebuild scripts with build recipes)
▶ Package tree overlay (tree with add-on packages)
▶ SLOTS and USE flags
▶ Virtual packages
▶ Package Keywords
▶ Arch Profiles



Distribution Models for HEP

▶ Full OS, Virtual Machines, Containers
● Base images with common HEP packages
● Binary package servers with pre-compiled add-ons
● Automated image build process with Catalyst

▶ Gentoo Prefix Environments
● Packages installed within a prefix by non-root users
● Good solution for CVMFS or HPC environments
● Support for Mac OS X and other systems (users’ laptops)



Ebuild scripts

▶ Shell script with several phase functions
● For example: src_prepare(), src_configure(), src_install(), etc

▶ Short detour: Quickstart Ebuild Guide
▶ Dependencies express how to rebuild if needed
▶ Easy to create package for newer versions after first
▶ emerge/ebuild command line tools used to install

(similar to yum/rpm, but for source-based packages)

https://devmanual.gentoo.org/quickstart/


Gentoo Prefix Project

▶ Uses Portage to install packages within a prefix
▶ Uses host OS’s kernel and C library
▶ Optionally, can share only the kernel on Linux
▶ Support for Linux, Solaris, Mac OS X, and other UNIX 

systems
▶ Downside: best if used with single tree, as many 

separate trees take space



Gentoo and HEP software

▶ Gentoo is popular among scientists
● Several developers are physicists

▶ Some HEP software already available:
● ROOT, CLHEP, Geant3/4, Pythia, HepMC, herwig(++), cernlib, 

PAW, lhapdf, looptools, yoda, etc
● Other interesting tools available: 

AFS, CVMFS, Nvidia CUDA, ICC, Vc, etc

▶ New software packages easy to add



Conclusions

▶ Gentoo’s Portage is a mature solution for packaging
● Many available packages, including HEP software
● Possibility to automate image builds

▶ Not intended as only solution
● Not ideal for highly combinatorial installations, although it is 

still possible to use it for this case

▶ ChromeOS / CoreOS model may make sense for HEP
▶ Example: automated builds into CVMFS and base VM 

and container images + binary package hosts for users



Live Demo and Q&A



Thank you!


