
W3C ORTC Community
Group Meeting #9

June 24, 2015 10:00AM-11:30AM PDT

Chair: Erik Lagerway (erik@hookflash.com)

W3C CG IPR Policy
● See the Community License Agreement for details.
● Goals are

○ Enable rapid spec development
○ Safe to implement via royalty-free commitments from

participants+employers
○ Comfort for committers by limiting scope to OWN contributions
○ Transparency about who is making commitments

● How it works in practice
○ Anyone can post to public-ortc@w3.org
○ CG members who have signed CLA can post to public-ortc-contrib
○ Editor should ensure that spec includes only “contributions”, CC-ing

public-ortc-contrib makes that easier on the editor.

http://www.w3.org/community/about/agreements/cla/
mailto:public-ortc@w3.org

Welcome!
● Welcome to the 9th meeting of the W3C

ORTC Community Group! Now 106
members!

● During this meeting, we hope to:
○ Bring you up to date on the status of the ORTC

specification
○ Make progress on some outstanding issues
○ Organize/plan for implementation feedback

http://www.w3.org/community/ortc/

About this Virtual Meeting
Information on the meeting:
● Hangouts Meeting

○ Web Broadcast Link (view only)
○ Participatory Hangout Link (when meeting starts)

● Link to Slides has been published on CG home page &
ORTC.org

● Scribe? IRC http://irc.w3.org/ Channel: ORTC
● The meeting is being recorded.

https://plus.google.com/events/cn5m5llu2p5vk3kf7q7kss87rd0
http://irc.w3.org/

W3C ORTC Community Group Basics
● W3C ORTC CG website:

○ http://www.w3.org/community/ortc/

● Public mailing list: public-ortc@w3.org
○ Join Here - link on the right hand side
○ Non-members can post to this list.
○ Non-member contributions are problematic.

● Contributor’s mailing list: public-ortc-contrib@w3.org
○ Join Here - link on the right hand side
○ Members only, preferred list for contributions to the specification.

http://www.w3.org/community/ortc/
mailto:public-ortc@w3.org
http://www.w3.org/community/ortc/
mailto:public-orca-contrib@w3.org
http://www.w3.org/community/ortc/

Associated Sites

● ORTC developer website: http://ortc.org/
○ Editor’s drafts, pointers to github repos, etc.

● ORTC API Issues List:
https://github.com/openpeer/ortc/issues?state=open

http://ortc.org/
https://github.com/openpeer/ortc/issues?state=open

Editor’s Draft Changes
● June 2015 Editor’s draft:

○ http://ortc.org/wp-content/uploads/2015/06/ortc.html

Changes from the 07 May Editor’s Draft:

Phillip Hancke’s Review (Issue 198).
● Editorial fixes (next slide)
● Errors in sample code

○ Trivial: mismatched }’s and ;’s
○ Not so trivial: forking problems in the API (more later)

■ Sample code now points out the problem via comments.

https://github.com/openpeer/ortc/issues/198

Editorial: Philipp Hancke’s Review (Issue 198)
a. Introduction rewritten to better explain the relationship between the objects.
b. Sections re-ordered to go from bottom of the stack towards the top.

i. Overview

ii. The RTCIceGatherer Object

iii. The RTCIceTransport Object

iv. The RTCDtlsTransport Object

v. The RTCRtpSender Object

vi. The RTCRtpReceiver Object

vii. The RTCIceTransportController Object

https://github.com/openpeer/ortc/issues/198

Philipp Hancke’s Review (cont’d)
● New Issues created for:

● No “Failed” state in IceTransportState (Issue 199)
● Error handling when calling getStats on “closed” objects (Issue

214).
● RTCIceCandidate: Support for “Generation” (Issue 212)
● Privacy Issues (Issue 213).
● Handling of certificates and fingerprints in the non-RTP/RTCP

mux case (Issue 210)
● DtlsTransport.getLocalParameters and certificate creation (Issue

211)

https://github.com/openpeer/ortc/issues/199
https://github.com/openpeer/ortc/issues/214
https://github.com/openpeer/ortc/issues/214
https://github.com/openpeer/ortc/issues/212
https://github.com/openpeer/ortc/issues/213
https://github.com/openpeer/ortc/issues/210
https://github.com/openpeer/ortc/issues/211
https://github.com/openpeer/ortc/issues/211

Editor’s Draft Changes
ICE
● Issue 199: Added the "failed" state to RTCIceTransportState
● Issue 207: Added a complete attribute to the RTCIceCandidateComplete dictionary
● Issue 208: Updated the description of RTCIceGatherer.close() and the "closed"

state
● Issue 216: Clarified ICE state transitions due to consent failure

RTCWEB/WebRTC 1.0 compatibility
● Issue 214: Updated Statistics API error handling to reflect proposed changes to the

WebRTC 1.0 API
● Issue 215: Updated Section 10 (RTCDtmfSender) to reflect changes in the

WebRTC 1.0 API
● Issue 217: Added a reference to draft-ietf-rtcweb-fec

https://github.com/openpeer/ortc/issues/199
https://github.com/openpeer/ortc/issues/207
https://github.com/openpeer/ortc/issues/208
https://github.com/openpeer/ortc/issues/216
https://github.com/openpeer/ortc/issues/214
https://github.com/openpeer/ortc/issues/215
https://github.com/openpeer/ortc/issues/217

RTCIceCandidateComplete (Issue 207)
May Editor’s draft:

typedef (RTCIceCandidate or RTCIceCandidateComplete) RTCIceGatherCandidate;
dictionary RTCIceCandidateComplete {
};

Proposed change:
typedef (RTCIceCandidate or RTCIceCandidateComplete) RTCIceGatherCandidate;
dictionary RTCIceCandidateComplete {
 boolean complete = true;
};

Justin: This seems kind of bizarre, an event with a variable that is only set to a single value. Can't this be handled

entirely through IceGathererStateChange?

Robin: IceGatherStateChange tells the local peer that “candidates are complete”. The question is how that

information is signaled over the wire and then provided in RTCIceTransport.addRemoteCandidate(). The

proposal is to use the RTCIceCandidateComplete dictionary for that purpose, so that state changes are triggered

by calling RTCIceTransport.addRemoteCandidate(RTCIceCandidateComplete). Having one attribute seems

cleaner than signaling null and passing that to addRemoteCandidate.

https://github.com/openpeer/ortc/issues/207
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#widl-RTCIceCandidateComplete-complete

Revised RTCIceTransportState Definitions
Enumeration description

new The RTCIceTransport object is waiting for remote candidates to be supplied. In this state the object can respond to
incoming connectivity checks.

checking The RTCIceTransport has received at least one remote candidate, and a local and remote RTCIceCandidateComplete
dictionary was not added as the last candidate. In this state the RTCIceTransport is checking candidate pairs but has not
yet found a successful candidate pair, or liveness checks have failed (such as those in [CONSENT]) on a previously
successful candidate pair.

connected The RTCIceTransport has received a response to an outgoing connectivity check, or has received incoming DTLS/media
after a successful response to an incoming connectivity check, but is still checking other candidate pairs to see if there is a
better connection. In this state outgoing media is permitted.

completed A local and remote RTCIceCandidateComplete dictionary was added as the last candidate to the RTCIceTransport and all
appropriate candidate pairs have been tested and at least one functioning candidate pair has been found.

disconnected The RTCIceTransport has received at least one local and remote candidate, and a local and remote
RTCIceCandidateCompletedictionary was not added as the last candidate, but all appropriate candidate pairs thus far have
been tested and failed (or consent checks [CONSENT], once successful, have now failed). Other candidate pairs may
become available for testing as new candidates are trickled, and therefore the "failed" state has not been reached.

failed A local and remote RTCIceCandidateComplete dictionary was added as the last candidate to the RTCIceTransport and all
appropriate candidate pairs have been tested and failed.

closed The RTCIceTransport has shut down and is no longer responding to STUN requests.

http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceCandidateComplete
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#bib-CONSENT
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceCandidateComplete
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceCandidateComplete
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#bib-CONSENT
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport
http://internaut.com:8080/~baboba/ortc/ortc-6-14-2015.html#idl-def-RTCIceTransport

Revised ICE State Diagram (199, 216)

Red = additional transitions due to consent loss (connected
-> checking) and pending decisions around "what is
continuous nomination" (failed -> checking)

Statistics API Error Handling (Issue 214)
Goal: same behavior as in WebRTC 1.0. But what is that?
11 June Editor’s draft (http://w3c.github.io/webrtc-pc/#statistics-model) Section 8.2.1:

1. If the RTCPeerConnection object's RTCPeerConnection signalingState is
closed, throw an InvalidStateError exception.

However, there is an open issue to return the last stats object instead:
https://github.com/w3c/webrtc-stats/issues/3
Also, a Firefox bug:
https://bugzilla.mozilla.org/show_bug.cgi?id=1056433

https://github.com/openpeer/ortc/issues/214
http://w3c.github.io/webrtc-pc/#statistics-model
http://w3c.github.io/webrtc-pc/#idl-def-RTCPeerConnection
http://w3c.github.io/webrtc-pc/#dom-peerconnection-signaling-state
https://github.com/w3c/webrtc-stats/issues/3
https://bugzilla.mozilla.org/show_bug.cgi?id=1056433

Statistics API Error Handling (cont’d)
The May ORTC Editor’s draft sez (in Section 13.1):

1. For RTCDtlsTransport.getStats(), check whether RTCDtlsTransport.start() has been called; if not, throw an
InvalidStateError exception. For RTCIceTransport.getStats(), check whether RTCIceTransport.start() has
been called; if not, or if RTCIceTransport.stop() has been called, throw an InvalidStateError exception. For
RTCRtpSender.getStats(), check whether RTCRtpSender.send(parameters) has been called; if not, throw
anInvalidStateError exception. For RTCRtpReceiver.getStats(), check whether
RTCRtpReceiver.receive(parameters) has been called; if not, throw anInvalidStateError exception.

Why??
● If objects have not been “started”, can’t we just return appropriate objects (e.g. zero

for counters), rather than treating this as an error?
● If an object is in the “closed” state, can’t we just return the last stats object before it

was closed?

Statistics API Error Handling (cont’d)
Proposal:

● Delete the text in bullet 1.
● Add to Section 13.1: “If the object has not yet begun to send

or receive data, the returned stats will reflect this. If the object
is in the closed state, the returned stats will reflect the stats at
the time the object transitioned to the closed state.”

RTCDtmfSender sync with 1.0 (Issue 215)
Goal: same behavior (and spelling!) as in WebRTC 1.0.

But what is that?
11 June Editor’s draft (http://w3c.github.io/webrtc-pc/#peer-to-peer-dtmf) Section 7:

Same spelling in WebRTC 1.0 and ORTC:
insertDTMF, onetonechange, toneBuffer, duration, interToneGap

Different spelling in WebRTC 1.0 and ORTC:
RTCDTMFSender vs. RTCDtmfSender in ORTC)

https://github.com/openpeer/ortc/issues/215
http://w3c.github.io/webrtc-pc/#peer-to-peer-dtmf

RTCDtmfSender sync with 1.0 (cont’d)
Peter Thatcher’s suggestion on the public-webrtc mailing list:
https://lists.w3.org/Archives/Public/public-webrtc/2015Jun/0052.html

I like your rule, which I read as "we use CamelCase, except for that RTC thing at the beginning that we're stuck
with".

I'm in favor of changing DTMFSender to be DtmfSender. I don't think there are any backwards compatibility
issues with changing the type name (it's just a search and replace in the spec and code base). While we're at it,
can we change the event objects with "RTCDTMF" to "RtcDtmf" as well? Might as well be consistent.

The only change that would have some compatibility implications would be the insertDTMF method. As much as
I would like that to be insertDtmf, I'm willing to live with it being insertDTMF.

https://lists.w3.org/Archives/Public/public-webrtc/2015Jun/0052.html

Questions for the CG

● Is the CG generally OK with the direction in
which the Editor’s draft is headed?

● Do you have questions about general
aspects of the spec?

● Issues from Phillip’s Review (Issues 212, 213)
● DTLS

○ Certificates and Fingerprints in the non-mux case (Issue 210)
○ DtlsTransport.getLocalParameters and certificate

creation (Issue 211)
○ DTLS: Problems with forking (Issue 218)

● Response to connectivity checks prior to calling
iceTransport.start()? (Issue 170)

For Discussion Today

https://github.com/openpeer/ortc/issues/212
https://github.com/openpeer/ortc/issues/213
https://github.com/openpeer/ortc/issues/210
https://github.com/openpeer/ortc/issues/211
https://github.com/openpeer/ortc/issues/218
https://github.com/openpeer/ortc/issues/170

Coming Attractions
● Behavior of sender.send(parameters) and

receiver.receive(parameters) when
parameters.encodings not set.

● Statistics API (updates to support simulcast and
scalable video coding)

● Updates for compatibility with WebRTC 1.0 objects
● IdP (if updated in WebRTC 1.0)
● Data Channel (if updated in WebRTC 1.0)

Support for “generation” (Issue 212)
From Philipp:

How does RTCIceCandidate does deal with the extensibility defined in RFC 5245 --

https://tools.ietf.org/html/rfc5245#section-15.1 (extension-att-name etc). For example,

the generation attribute from http://xmpp.org/extensions/xep-0176.html#protocol-syntax

is pretty common (e.g. supported in Chrome).

Robin Raymond:

generation does not apply to ORTC since the candidates come from the gatherer

which never changes its usernameFragment / password. The restart mechanism

happens in the IceTransport which can take a substitute gatherer. So the tracking of the

generation has to happen at a high level.

https://github.com/openpeer/ortc/issues/212
https://tools.ietf.org/html/rfc5245#section-15.1
http://xmpp.org/extensions/xep-0176.html#protocol-syntax

Privacy (Issue 213)
From Philipp Hancke's review comments:
18) page 12, section 3.11 (RTCIceCandidate)

DOMString relatedAddress = "";

unsigned short relatedPort;

I don't think those attributes are useful, just a potential leak of ip addresses when forcing
turn-only relays. So I would not expose them.

32) page 20, section 5.8

can be used to reduce leakage of IP addresses in certain use cases.

add a note about setting rel-addr to 0.0.0.0 then

https://github.com/openpeer/ortc/issues/213

Privacy (cont’d)
Martin Thomson:
Yes, this is a privacy issue, but those values are used to handle some corner cases in
the deduplication algorithm. I'd be OK with them being replaced with (salted) hashes or
something like that, but then you wouldn't be able to use SDP.

Robin Raymond:
I think the real answer is that the browser will have to enact a privacy mode to hide away
the real IP addresses…

Question: Given the desire to maintain compatibility with
WebRTC 1.0, is there anything we should do in the ORTC
API?

DTLS Certificate Issues (Issues 210,211,218)
● Issue 210: In the RTP/RTCP non-mux case with DTLS, do we have distinct

certificates for RTP and RTCP (and multiple fingerprints), or just one?

● Issue 211: When are DTLS certificates generated? When the DtlsTransport is
constructed? When .getLocalParameters() is called? (needs a Promise), or some
other time?

● Issue 218: How does forking work with DtlsTransport? For fingerprint verification,
Answerers expect the DtlsTransport to provide a certificate matching the fingerprint
provided in the Offer. This implies that the Offerer constructs DtlsTransports with
the same certificate and fingerprint for each fork.

Are these three different problems (each with their own solution), or three
symptoms of the same problem?

https://github.com/openpeer/ortc/issues/210
https://github.com/openpeer/ortc/issues/211
https://github.com/openpeer/ortc/issues/218
https://github.com/openpeer/ortc/issues/210
https://github.com/openpeer/ortc/issues/211
https://github.com/openpeer/ortc/issues/218

Three different problems?
● Issue 210: In the RTP/RTCP non-mux case with DTLS, do we have distinct

certificates for RTP and RTCP (and multiple fingerprints), or just one?
○ Can generate distinct certs and fingerprints (interop issues?) OR
○ Can mandate the same certificate/fingerprint.

● Issue 211: When are DTLS certificates generated?
○ Can make .getLocalParameters a promise.

● Issue 218: How does forking work with DtlsTransport?
○ Could have a cloneTransport method for DTLS that constructs an

DtlsTransport with the same certificate/fingerprint (yuck!)

https://github.com/openpeer/ortc/issues/210
https://github.com/openpeer/ortc/issues/211
https://github.com/openpeer/ortc/issues/218

Or three symptoms of the same problem?
● WebRTC 1.0 Section 5.5 Certificate management API (currently optional):

partial interface RTCPeerConnection {
 static Promise<RTCCertificate> generateCertificate (AlgorithmIdentifier keygenAlgorithm);
};

● Issue 210: RTP/RTCP non-mux case with DTLS. Add RTCCertificate as a
required argument to the DtlsTransport constructor.

● Issue 211: When are DTLS certificates generated? When generateCertificate is
called.

● Issue 218: How does forking work with DtlsTransport? Pass the same
certificate to the DtlsTransport constructor for each fork.

http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-generateCertificate-Promise-RTCCertificate--AlgorithmIdentifier-keygenAlgorithm
https://github.com/openpeer/ortc/issues/210
http://w3c.github.io/webrtc-pc/#idl-def-RTCCertificate
https://github.com/openpeer/ortc/issues/211
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-generateCertificate-Promise-RTCCertificate--AlgorithmIdentifier-keygenAlgorithm
https://github.com/openpeer/ortc/issues/218

Proposed RTCDtlsTransport changes

partial interface RTCCertificate {
 static Promise<RTCCertificate> generateCertificate (AlgorithmIdentifier keygenAlgorithm);
};

[Constructor(RTCIceTransport transport, RTCCertificate certificate)]
partial interface RTCDtlsTransport {
 //...
};

Reasoning:
● Matches proposed pattern from WebRTC 1.0 (except we don't have a peer connection object)
● Certificate management API is now required but solves the issue(s)

Responding to connectivity checks (Issue 170)
(IMPORTANCE - reminder)

Responding to incoming ICE connectivity checks immediately is desirable to provide
faster media setup:
1) Avoid buffering incoming connectivity checks arriving to the RTCIceGatherer (to

deliver to an RTCIceTransport later once RTCIceTransport.start() is called after the
"answer" arrives).

2) Avoid setup delays by responding to incoming connectivity checks, allowing DTLS
to be negotiated and setup earlier than full round trip signalling normally requires.

3) Correctly calculate the round trip time for connectivity checks (for better metrics).
4) Avoid loss of media due to buffer overflows:

a) Incoming media can arrive once DTLS has entered the “connecting” state (after
a successful connectivity check response is sent).

b) If receiver.receive() is called prior to receipt of the Answer, for video, we can
avoid having an initial I-frame overflow the buffer, which could result in multiple
packet losses/frame loss despite robustness measures (RTX, FEC).

Responding to connectivity checks (Issue 170)
(Agreed Solution "RTCIceTransport constructor")

[Constructor(RTCIceGatherer)]

partial interface RTCIceTransport {

 readonly attribute DOMString remoteUsernameFragment; // can get auto-filled

 readonly attribute RTCIceRole role; // can get auto-filled

 attribute EventHandler? onremotetransportlatched; // needed? use case?

};

// Example:

var iceGatherer = new RTCIceGatherer(..);
var iceTransport = new RTCIceTransport(iceGatherer,..);
var dtlsTransport = new RTCDtlsTransport(iceTransport,..);

Responding to connectivity checks (Issue 170)
Proposed solution to race condition

Problem:

Potential race condition between programmer calling RTCIceTransport.start() with a
usernameFragment / role different that an auto-latched incoming remote ICE
usernameFragment / role due to asynchronous API;

Solution:
Add a factory method that constructs a brand new RTCIceTransport object with a specific username fragment or fetch a
previously associated RTCIceTransport which was auto-latched to the usernameFragment passed in an atomic fashion.

[Constructor(optional RTCIceGatherer gatherer)]
partial interface RTCIceTransport {

 //...

 static RTCIceTransport createOrUseExisting(RTCIceGatherer gatherer, DOMString usernameFragment);

};

Responding to connectivity checks (cont’d)
(Race condition for incoming DTLS packet before DTLS constructed)

Problem:

Very small window where RTCIceTransport constructed from an RTCIceGatherer
(and ready to respond to connectivity checks), but RTCDtlsTransport has not yet
been constructed from the RTCIceTransport (so buffering is still needed):

var iceGatherer = new RTCIceGatherer(..);
var iceTransport = new RTCIceTransport(iceGatherer,..);
// tiny race window where ICE response can be sent but no DTLS transport wired yet
var dtlsTransport = new RTCDtlsTransport(iceTransport,..);

Solution:

Buffer a few packets to prevent the DTLS "hello" packet being lost / retransmitted.

Responding to connectivity checks (Issue 170)
(Questions for ORTC CG)

1) Are these solutions "acceptable"?
2) Are the solutions worth the effort?

NOTE: Many ICE scenarios cannot be set up until full
round trip signalling happens anyway due to firewall
pinholes not being opened until outgoing checks are
issued.

3) Any other options?

Question for Community Group:

Are there any comments regarding known
deficiencies of the ORTC API at this time?

Good time to speak before implementation is
too far along!

Organization / Call for implementation feedback
Mobile C++ ORTC implementation:
https://github.com/openpeer/ortc-lib-sdk

ORTC JS "shims" (i.e. downshim and upshim to / from WebRTC 1.0)
https://github.com/openpeer/ortc-js-shim (vacant repo)

ORTC specification:
https://github.com/openpeer/ortc

ORTC Node JS implementations:
https://github.com/openpeer/ortc-node

Browser Implementations:
Requested at this time (status.modern.ie lists ORTC as "In Development")

https://github.com/openpeer/ortc-lib-sdk
https://github.com/openpeer/ortc-js-shim
https://github.com/openpeer/ortc
https://github.com/openpeer/ortc-node
http://status.modern.ie/

ORTC-lib Update
Work on ORTC-lib continues.
If you would like to participate in coding any of the ORTC
open source projects then:
1. Join ORTC Community Group
2. Join developer mailing list / group

http://ortc.org/dev
3. Start helping!

http://ortc.org/dev

Thank you

Special thanks to:
Bernard Aboba - Microsoft
Michael Champion - Microsoft
Justin Uberti - Google
Peter Thatcher - Google
Robin Raymond - Hookflash
Erik Lagerway - Hookflash

For More Information

ORTC Community Group
http://www.w3.org/community/ortc/

ORTC Developers & API Drafts
http://ortc.org

http://www.w3.org/community/ortc/
http://ortc.org

