
Intro to Python for Machine
Learning

Dr Vincent Croft - 1st Terascale School of Machine Learning
 22nd October 2018 Desy -Hamburg

https://indico.desy.de/indico/event/21278/

● Why python?
● Getting and using python

○ Locally
○ Docker
○ Cloud

● Mastering the basics
○ Types
○ Logic
○ Containers
○ Loops

● Structures
○ Functions
○ Classes

2

Part One - Welcome to python

Python is easy to understand.

3

Why python?

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Step one: print(“hello world”)
https://www.python.org/downloads/

https://www.anaconda.com/download/

brew/apt-get/microsoft-store install python

While you’re at it make sure you have a github account and git installed locally

And Docker https://docs.docker.com/install/

4

https://www.python.org/downloads/
https://www.anaconda.com/download/
https://github.com

Step one: print(“hello world”)
Get python running locally!

print “hello world”

5

Step Two: Run Jupyter
pip install jupyter

6

print “hello world” in notebook

7

Easy? Ok now do it in docker - OPTIONAL
Simply run python - docker run -it python:3.6

Then a notebook - docker run -p 8888:8888 jupyter/minimal-notebook

Then mount a local dir in the container - mkdir ~/notebooks

docker run --rm -p 8888:8888 -v "$PWD":/home/jovyan/work jupyter/datascience-notebook

8

Step Three: Simple git-Did you log into github.com? No? do it now!
Fork this course material at https://github.com/vincecr0ft/terascale_python

Clone your fork of the code

git checkout -b a_new_branch_name

Edit you name in README.md

git add README.md

git commit -m “adding my name”

git push origin a_new_branch_name

In browser merge your new branch with master (your master)
9

Chapter Two: Actual python
Python is simple and flexible

Variable assignment is automatic

Try some maths with simple integers, floats, boolians and strings!

A = 3.142

B = “bananas”

print(A+B) etc

10

Logic
N_counts = “count of three”

if “four” in N_counts:

print “ney! Four is too many”

elif “three” in 1234:

print “ok three’s fine

else:

do_something()
11

Containers
words = [“first”, “second”,”third”]

words.append(“forth”)

print words

print words[2]

numbers = {“first”:1,
“second”:2,”third”:3}

numbers[“forth”] = 4

print numbers

print numbers[“second”]

12

Exercise 1: Prime Numbers
The goal is to make a dictionary of important prime numbers

In the range 1-100:

● What is the largest prime number?
● What is the most common factor (it should be two)
● What is the largest prime factor

13

Chapter 3: Structuring your code
Python is great for simple maths but is it more than a scripting language?

def some_function(some_interpreted_inputs):

result = some_interpreted_inputs * 2 #Some calculation

return result

14

Classes - Containers for your functions
class MyClass:

def __init__(self, initial,variables):

self.name = initial+variables

def who_am_i(self):

print(self.name)

15

Want to know more?
projecteuler.net

Project Euler is a series of challenging mathematical/computer
programming problems that will require more than just mathematical
insights to solve. Although mathematics will help you arrive at elegant
and efficient methods, the use of a computer and programming skills
will be required to solve most problems.

16

https://projecteuler.net

Part Two - Python for Machine Learning
● Intro to Numpy
● Numpy Algebra
● Data with Pandas
● Generating data with Numpy
● Plotting with Matplotlib
● Machine Learning with Scikit-learn

17

Numpy!
Numpy makes python fast!

Python is considered slow because it is an interpreted language

In each loop type comparisons and function overloading factors into the run time

Numpy type casts the array elements and pushes the overloading deep down into the
compiled (fortran) core of the library.

This allows for a roughly 100x speed up on all iterative, low level operations.

18

Numpy for loops- Example One: ufuncs
Pure python lists

a = [1 , 2, 3, 4, 5, 6, 7 , 8, 9, 10]

b = [i + 5 for i in a]

print(b)

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Numpy arrays

Import numpy as np

a = np.array(a)

b = a + 5

print(b)

[6 7 8 9 10 11 12 13 14 15]

19

Numpy for loops- Example One: ufuncs
Arithmetic operators: + - * / // % **

Bitwise operators: & | ~ ^ >> <<

Comparison operators: < > <= >= == !=

Trigonometric functions: np.sin, np.cos, np.tan, etc

Exponents: np.exp, np.log, np.log10, etc

...and more...

20

Numpy for loops- Example Two: agregations
Aggregations summarise the data in an array

min(a) -> a.min()

max(b) -> b.max()

sum(c) -> c.max()

sum(d)/len(d) -> d.mean()

Also works on multidimensional arrays.

Lots of aggregations available. All
more than 50x faster than pure python

21

Numpy for loops- Example Three: broadcasting
Ufuncs for weird size arrays

Add a row to a matrix or add a column vector to a row vector - linear algebra!

No more loop indexes

22

Numpy for loops- Example Four: slicing and more

Pure python

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print a[3]

4

print a[2:6]

[3, 4, 5, 6]

But that’s it!

a = np.array([1, 2, 3, 4])

mask = np.array([True, False, True, False])

print a[mask]

array([1,3])

b = np.array([5, 6, 7, 8, 9, 10, 11, 12, 13])

mask = (b%2 == 0) & (b < 10)

print(b[mask])

array([6, 8])

23

Numpy for loops - Example Four: slicing and more

a = np.array([1,2,3,4,5])

Indexes = [2, 3]

print(a[indexes])

array([3,4])

a = np.array([1, 2, 3, 4])

mask = np.array([True, False, True, False])

print a[mask]

array([1,3])

b = np.array([5, 6, 7, 8, 9, 10, 11, 12, 13])

mask = (b%2 == 0) & (b < 10)

print(b[mask])

array([6, 8])
24

Numpy for Loops - combinations are endless!
m = np.arange(6).reshape(2,3)

print(m)

array([[0, 1, 2],

 [3, 4, 5]])

print(m[m.sum(axis=1) > 4, 1:])

array([[4, 5]])

25

Want to know more?
Experience. Numpy is neat, efficient and useful.

machinelearningplus.com has 101 numpy problems and solutions to test yourself

26

https://www.machinelearningplus.com/python/101-numpy-exercises-python/

Pandas!
Name comes from “panel data”

Built an top of numpy!

Standard tool for reading, and manipulating data.

Format recently adopted (and improved) by ROOT RDataFrame

27

What does it look like?

28

Why pandas? - not essential but convenient
● Tools for reading and writing data
● Data alignment and integrated handling of missing data
● Ability to perform arithmetic operations
● Easy reshaping and pivoting of datasets
● User-friendly operations for merging and joining data
● Ability to handle time series

29

A return to Numpy!
Numpy is especially effective for generating data points e.g:

np.arange(6) -> array([0, 1, 2, 3, 4, 5])

np.linspace(9, 12, 6) -> array([9., 9.6, 10.2, 10.8, 11.4, 12.])

Or whole random distributions

np.random.normal(0, 1, 1000) # 1000 random gaussian distributed points

gauss = np.random.normal(mean, sigma, 1000) # lots of data

sample = np.random.choice(gauss, 5) # 5 random points from the data
30

pyplot!
Lots of programs available. Most common is pyplot from matplotlib

import matplotlib.pyplot as plt

x = range(10)

y = [i*i for i in x]

plt.plot(x,y)

plt.show()

31

Machine Learning with Sklearn
There are literally hundreds of classifiers and regressors in the scikit-learn package

from sklearn import classifier

clf = classifier(options)

clf.fit(training_data, training_target)

prediction = clf.predict(test_data)

rms_error = np.mean(np.pow((prediction - test_target), 2))

32

Want to know more?
https://www.kaggle.com

Kaggle is the world's largest
community of data scientists and
machine learners. Kaggle offers
machine learning competitions
and now also offers a public data
platform, a cloud-based
workbench for data science, and
short form AI education.

33

https://www.kaggle.com

pyROOT
● ROOT Website: https://root.cern
● Material online: https://github.com/root-project/training
● More material: https://root.cern/getting-started

○ Includes a booklet for beginners: the “ROOT Primer”
● Reference Guide: https://root.cern/doc/master/index.html
● Forum: https://root-forum.cern.ch

34

https://root.cern
https://github.com/root-project/training
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://root-forum.cern.ch

ROOT in a Nutshell
● ROOT is a software framework with building blocks for:

○ Data processing
○ Data analysis
○ Data visualisation
○ Data storage

● ROOT is written mainly in C++ (C++11/17 standard)
○ Bindings for Python the focus here!

● Adopted in High Energy Physics and other sciences (but also
industry)
○ 1 EB of data in ROOT format
○ Fits and parameters’ estimations for discoveries (e.g. the Higgs)
○ Thousands of ROOT plots in scientific publications 35

An Open Source Project
We are on github
github.com/root-project
All contributions are warmly welcome!

Interpreter
● ROOT has a built-in interpreter : CLING

○ C++ interpretation: highly non trivial and not foreseen by the language!
○ One of its kind: Just In Time (JIT) compilation
○ A C++ interactive shell

● Can interpret “macros” (non compiled programs)
○ Rapid prototyping possible

● ROOT provides also Python bindings
○ Will use Python interpreter directly after a simple import ROOT

36

$ root

root[0] 3 * 3

(const int) 9

Example: C++ to Python

37

> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

> python
>>> import ROOT
>>> h = ROOT.TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()

Dynamic C++ (JITting)

38

 import ROOT
 cpp_code = """
 int f(int i) { return i*i; }
 class A {
 public:
 A() { cout << "Hello PyROOT!" << endl; }
 };
 """
 # Inject the code in the ROOT interpreter
 ROOT.gInterpreter.ProcessLine(cpp_code)

 # We find all the C++ entities in Python!
 a = ROOT.A() # this prints Hello PyROOT!
 x = ROOT.f(3) # x = 9

C++ code we
want to invoke
from Python

