
Pipe operator
|>

Update and bikeshedding

The long-awaited pipe operator is nearly

ready for Stage 3. We have one more big

hurdle:

We are stuck on bikeshedding its spelling

for a crucial piece of its syntax: its topic

reference’s token.

J. S. Choi
Indiana University

2022-03
GitHub repository

https://github.com/tc39/proposal-pipeline-operator/wiki/Bikeshedding-the-Hack-topic-token
https://github.com/tc39/proposal-pipeline-operator/

Why a pipe operator
Developers should be able to express non-this-based
dataflows as fluent interfaces – linear left-to-right chains –
just as they can with this-based property/method chains.
A pipe operator |> would make this possible.

kitchen.getFridge() |> find(@, pred)

 |> count(@).toString()

|> creates a lexical context around its RHS, within which it
binds @ (the topic reference) to the result of its LHS.

Developers have been using progressively more APIs with many
separately importable functions, acting on objects with smaller
prototypes and fewer methods – rather than objects with larger
prototypes and many methods. See Firebase JS SDK v9’s changes for
an example of such an API.

Developers often transform raw data with a
sequence of steps in “dataflows”.

Dataflows with prototype method chains
benefit from a linear, left-to-right word order:

kitchen.getFridge().find(pred)

 .count().toString()

In contrast, dataflows that use other
expressions (especially function calls) result in
deeply nested expressions, which have nonlinear
zigzagging word orders:

count(find(kitchen.getFridge(),

 pred)).toString()

0

0

1 2 3

1

0 1 2

2

4 5

3 5

4 5

4

3

https://firebase.googleblog.com/2021/07/introducing-the-new-firebase-js-sdk.html

Since the winter of 2021, we have also been
discussing the pipe operator in the greater context
of proposals for dataflow, which also include the
bind-this operator, the Extensions syntaxes,
partial-function-application (PFA) syntax, and
Function.pipe.

Although we will continue this holistic dataflow
discussion later in this meeting, a general consensus
has formed that the pipe operator with topic
reference is worth adding to the language (although
it must be added with a call-this operator).

The other last major hurdle is bikeshedding the
spelling of the topic reference, which involves several
cross-cutting concerns.

Long road to get here
The pipe operator in JavaScript has a long and
twisty history since its first proposal in 2015.
There is a history document with more details.

The proposal champions previously were split
between two possibilities (“F# style” with tacit
unary function calls – and “Hack style” with
lexical topic references). But, since the summer
of 2021, we have had consensus for Hack style
as the way forward due to concerns from the
Committee about F# style.

The developer community remains split, but
there appears to be large support for pipeline
syntax in whatever form we decide on.

https://github.com/tc39/proposal-pipeline-operator/blob/main/HISTORY.md#2021-12-holistic-dataflow-articles
https://jschoi.org/21/es-dataflow/
https://jschoi.org/21/es-dataflow/
https://github.com/tc39/proposal-bind-this
https://github.com/tc39/proposal-extensions
https://github.com/tc39/proposal-partial-application
https://github.com/js-choi/proposal-function-pipe-flow
https://github.com/tc39/proposal-pipeline-operator/blob/main/HISTORY.md
https://github.com/tc39/proposal-pipeline-operator/blob/main/HISTORY.md#2021-07
https://github.com/tc39/proposal-pipeline-operator/blob/main/HISTORY.md#2021-07

Parsing simplicity
Does the topic make parsing more complex or
contextual for computer or human readers?

Visual distinguishability
Is the topic easy to identify when humans
quickly scan code? How often will other
symbols resemble the topic reference? Does
visual noise frequently blur into ASCII soup?

Textual brevity
Does it make code excessively more verbose?

Typing easiness
Is typing it difficult in many keyboard formats?

When judging how each candidate topic token fulfills
these criteria, we must weigh its benefits and costs by
how often we expect them to occur in code.

Expected Benefit
= Expected Number of Occurrences
× Expected Benefit per Occurrence

Expected Cost
= Expected Number of Occurrences
× Expected Cost per Occurrence

For example, the candidate topic ## and tuple literals
#[] resemble each other, which has a cost to visual
distinguishability. If tuple literals (and therefore that cost)
are expected to occur frequently, then the cost must be
multiplied by that large number of occurrences.

Criteria for choosing the topic reference’s token

Wiki page (with table)

Issue #91 (very long thread)

^ and % were previously candidates but have been
excluded, due to concerns by an implementer about
lexing complexity.

also was a candidate but has been excluded. #[]
syntax for tuple literals would unacceptably require
x |> #[0] to be parenthesized as x |> (#)[0].

Additionally, identifiers like it, $, _, and $_ were
also deemed too hazardous to refactoring.

x |> f(@, 0)

x |> f(^^, 0)

x |> f(%%, 0)

x |> f(@@, 0)

x |> f(#_, 0)

x |> f(##, 0)

Candidate topic tokens (1/4)

https://github.com/tc39/proposal-pipeline-operator/wiki/Bikeshedding-the-Hack-topic-token
https://github.com/tc39/proposal-pipeline-operator/issues/91
https://github.com/tc39/incubator-agendas/blob/main/notes/2021/11-15.md#topic-token
https://github.com/tc39/incubator-agendas/blob/main/notes/2021/11-15.md#topic-token
https://github.com/tc39/proposal-pipeline-operator/issues/91
https://github.com/tc39/proposal-pipeline-operator/issues/91

x |> f(@, 0)

@ is the only viable single-character token.

To prevent an ASI hazard with @(expr) decorator syntax:
x |> @(@) // There is no semicolon.
class C {}

…we could make the previous lines an early error. To
compile, the developer must explicitly separate the pipe body
from the class:
x |> @(@); // Here, both @s are topic references.
class C {}

…or explicitly parenthesize the decorated class:
x |> (

 @(@) // Here, the first @ is a decorator indicator, not a topic reference.
 class C {}

)

Also, developers should be discouraged from putting complex expressions like
classes and functions in pipe bodies anyway.

x |> f(^^, 0)

^^ would require separation from the
bitwise-xor operator ^:

x |> ^^ ^ 2

…although bitwise xor is quite rare in most
JavaScript code.

^^ can be typed even in keyboard layouts with
circumflex-accent dead keys, although some
platforms require 3–4 keystrokes.

Candidate topic tokens (2/4)

https://github.com/tc39/proposal-pipeline-operator/issues/91#issuecomment-918511637
https://github.com/tc39/proposal-pipeline-operator/issues/91#issuecomment-918511637
https://github.com/tc39/proposal-pipeline-operator/issues/91#issuecomment-921189385
https://github.com/tc39/proposal-pipeline-operator/issues/91#issuecomment-921189385

x |> f(%%, 0)

%% would require separation from the
remainder operator %:

x |> %% % 2

…although the remainder operator is
uncommon in most JavaScript code (albeit more
common than bitwise xor).

x |> f(@@, 0)

Not to be confused with the single-character @
token.

Candidate topic tokens (3/4)

x |> f(##, 0)

is also not ambiguous with record/tuple literals or
with private fields (although it arguably is difficult to
read when mixed with any of them):

x |> f(this.#y, ##)

x |> f(#[##])

x |> f(#_, 0)

#_ would not be ambiguous with private fields
(which must be qualified with this.) or
record/tuple literals:

x |> f(this.#y, #_)

x |> f(#[#_])

…except in one special case:

x |> #_ in this

#_ would also preclude future bare private
fields.

Candidate topic tokens (4/4)

