
Compositing in Blink / WebCore
From WebCore::RenderLayer to cc:Layer

January 2014 update: Basic information here is still relevant. An updated perspective,
specifically about upcoming changes to overlap and “squashing”, can be found here

(Last updated October 2013)

(Hint - use presentation mode to see animations)

https://docs.google.com/presentation/d/1WOhbWLkhMyo4vZUaHq-FO-mt0B2sejXw-lMwohD5iUo/edit?usp=sharing

High-level overview

Lorem Ipsum Foobar

Compositing is
fun!

Hello
World!

What needs to be repainted as this animates?
With one backing store (pixel buffer):

Portions of all four layers!

Example 1

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Quisque sollicitudin malesuada
nisl, id hendrerit elit pulvinar vitae. Nam vel
risus ante, nec lacinia metus. Duis lacus
lectus, scelerisque a mollis sit amet, cursus
sed sapien. Duis ut quam ut quam
condimentum egestas viverra et arcu. Sed
cursus est eu libero faucibus interdum.
Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis
egestas. Sed pellentesque urna vel ipsum
sollicitudin sagittis. Donec sed mi nulla. In
vitae turpis turpis. Cras vehicula neque eget
tortor feugiat nec hendrerit ligula viverra. Sed
porta consequat euismod. Integer nec neque
ut mi blandit posuere. Morbi bibendum
porttitor commodo.

Home Images Videos About

What needs to be repainted as this scrolls?
With one backing store (pixel buffer):

Almost the entire page!

Example 2

Compositing:
(in the context of rendering websites)

The use of multiple backing stores to cache
and group chunks of the render tree.

Lorem Ipsum Foobar
Compositing is

fun!

Hello
World!

● Avoid unnecessary repainting
○ If yellow and red have their own backing stores, then nothing needs

"repainting" while this example animates.

● Makes some features more efficient or practical
○ Including: Scrolling, 3D CSS, opacity, filters, WebGL, hardware video

decoding, etc.

Why Compositing?

Three Primary Compositing Tasks

1. Determine how to group contents into
backing stores (i.e. composited layers).

2. Paint the contents of each composited layer.

3. Draw the composited layers to make a final
image.

The focus of this talk is Step 1, with a little bit
about Step 2.

References for the Big Picture
● WebCore guts, including WebCore::RenderLayer

○ Eric Seidel's talk - http://www.youtube.com/watch?v=RVnARGhhs9w

● Chromium and Skia side of painting
○ Brett Wilson's talk - http://www.youtube.com/watch?v=A5-aXfSt-RA

● How Chromium's compositor works, from cc::Layer to
GPU process
○ GPU accelerated compositor design doc -

http://dev.chromium.org/developers/design-documents/gpu-accelerated-co
mpositing-in-chrome

○ Reducing jank from costly repaints -
http://jankfree.org/

● Connecting WebCore::RenderLayer to cc::Layer
○ This talk!

http://www.youtube.com/watch?v=RVnARGhhs9w
http://www.youtube.com/watch?v=A5-aXfSt-RA
http://dev.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://dev.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://jankfree.org/

Background: Stacking
Contexts and Paint Order

(Refer to CSS 2.1 spec for more information)

Flow, Positioning, and Z-index

● Normal flow: children are laid-out according to
inline-level, block-level, float, and other formatting.

● Relative positioned elements: positioned relative to
their intended position as part of normal flow.

● Absolute positioned elements: positioned with respect
to containing block. Not part of normal flow.

● Fixed-position elements: positioned with respect to
viewport or other container. Not part of normal flow.

Flow, Positioning, and Z-index

● Relative positioned elements
● Absolute positioned elements
● Fixed-position elements

Z-index: allows control over how elements are ordered.

Positioned (relative or absolute or fixed**) elements with a
z-index become a stacking context**.

** These days fixed-position elements may also create stacking contexts for
many browsers, though it is not part of CSS 2.1 spec. Other features also
create stacking contexts extending the CSS 2.1 spec, such as transforms.

Stacking Contexts Example 1
position: absolute;
z-index: -1;

z-index: 7;

z-index: 8;

z-index: 9;

position: absolute;
z-index: 0;

z-index: 7;

z-index: 8;

z-index: 9;

position: absolute;
z-index: 1;

z-index: 4;

z-index: 5;

position: absolute;
z-index: 6;

z-index: 5;

z-index: 6;

Red borders: elements that
are stacking contexts.

Stacking context within
another stacking context.

Stacking Contexts Example 2
position: absolute;
z-index: -1;

z-index: 7;

z-index: 8;

z-index: 9;

position: absolute;
z-index: 1;

z-index: 4;

z-index: 5;

position: absolute;
z-index: 6;

z-index: 5;

z-index: 6;

position: absolute;
z-index: 2;

z-index: 7;

z-index: 8;

z-index: 9;

Red borders: elements that
are stacking contexts.

Stacking context within
another stacking context.

New z-index

Stacking Contexts - Intuition

A stacking context "flattens" the element's subtree, so
nothing outside of the subtree can paint between elements
of the subtree.

In other words: The rest of the DOM tree can treat the
stacking context as an atomic conceptual layer for painting.

With this property, stacking contexts are an ideal place to
define paint order explicitly.

Paint Order of a Stacking Context

1. Backgrounds and borders

2. Negative z-index children

3. Normal flow elements**

4. Z-index == 0 and/or absolute positioned children

5. Positive z-index children

** This is not the complete picture, see CSS 2.1 Section 9.9 and Appendix E.

Equivalent Order as Implemented

1. Backgrounds and borders

2. Negative z-order list of children

3. The RenderLayer's own contents

4. Normal flow list of children

5. Positive z-order list of children

Implementation detail: the "paint-order tree" is not the same topology as the
DOM tree. A parent-child pair in the DOM may be siblings in paint order.

Choosing How to
Composite Layers

Reasons to Make a Composited Layer
Composite when the render subtree could benefit from
being cached or grouped:

● Easier to apply certain effects to a subtree
○ e.g. opacity, transforms, filters, reflections

● Elements can move without repainting
○ e.g. scrolling, fixed-position elements

● More practical for hardware accelerated content
○ e.g. video, webGL, no need to read-back the pixels

● Potentially isolate content that repaints a lot
○ Just speculation at this point

Reasons to Make a Composited Layer
Composite when it is necessary to maintain correctness:

● To maintain correct paint order
○ Overlapping content must be on top of composited content.
○ Example shown next

● To ensure style properties correctly propagate to the
composited layer tree

○ For example, a parent that clips a composited descendant must also be composited.
○ Requires knowing the compositing reasons of descendants

Final output - Backing Store #1

Overlap: Basic Example - Desired

Should be underneath

Should be on top

Final output - Backing Store #1

Overlap: Basic Example - Wrong!!

Should be on top - But painting
into Backing Store #1 is wrong.

Backing Store #2

Final output - Backing Store #1

Overlap: Basic Example - Correct

Backing Store #2

Needs to be composited
because of overlap.
Backing Store #3

More Overlap Cases

● Composited negative z-index child
○ Requires parent to be composited, too

● Overlap during animations
○ Don't bother testing overlap, just assume everything

subsequently does overlap.

● Children of a composited container
○ Don't need to check for overlap against anything

outside of their composited container.

Simplified view of the algorithm
Iterate over children in the "paint-order tree". For each layer:
1. Determine if the layer needs compositing due to overlap

a. If something may be animating behind it, assume it overlaps and skip the computation
b. Otherwise, iterate over a list of bounding boxes of previous composited content, and test

intersection

2. Determine if the layer needs compositing based on its own properties
a. A long list of conditions including 3d transforms, opacity, fixed-position elements

(sometimes), etc.
b. RenderLayerCompositor::directReasonsForCompositing()

3. Recurse over children in paint order, repeat all these steps for each child.

4. Determine if the layer needs compositing due to status of the subtree
a. In particular, if the layer needs to be composited so that clip, transform, or other

information needs to propagate to the composited tree.
b. RenderLayerCompositor::subtreeReasonsForCompositing()

Chromium flags for insight into the compositor
--force-compositing-mode

Pages that don't "require" compositing will still use it

--show-composited-layer-borders
Visualize borders (and tiles) on composited layers.

--show-paint-rects
Visualize what layers required repainting

--show-property-changed-rects
Visualize what layers required redrawing without repainting

The frame viewer is extremely insightful, too!
http://www.chromium.org/developers/how-tos/trace-event-profiling-tool/frame-viewer

http://www.chromium.org/developers/how-tos/trace-event-profiling-tool/frame-viewer

Real-world compositing examples

● Poster Circle
○ Animations disable overlap testing and conservatively composite - try

adding a stacking context that does not overlap anything - it still gets
composited!

● MapsGL
○ HTML controls and popups easily overlayed on top of WebGL content.

● Android apps page
○ See composited layers come and go while transition animations are

playing. Notice clipping elements and 3d elements usually become
layers.

http://www.webkit.org/blog-files/3d-transforms/poster-circle.html
http://maps.google.com/?vector=1
http://www.android.com/apps/

Data Structures and
Code Paths

(As of October 2013 - code is likely to evolve and change)

Data Structures WebCore::RenderLayer

WebCore::CompositedLayerMapping

WebCore::GraphicsLayer

WebKit::WebLayer

WebKit::WebLayerImpl

cc::Layer

cc::Layer

The public object of the
Chromium Compositor's
interface that represents a
composited layer.

Data Structures WebCore::RenderLayer

WebCore::GraphicsLayer

WebKit::WebLayer

WebKit::WebLayerImpl

cc::Layer

WebKit::WebLayer
WebKit::WebLayerImpl

This is essentially the
cc::Layer interface made
available to WebKit code, so
that it can be used by
GraphicsLayer

WebLayer directly maps to
the cc::Layer interface.

WebCore::CompositedLayerMapping

Data Structures WebCore::RenderLayer

WebCore::GraphicsLayer

WebKit::WebLayer

WebKit::WebLayerImpl

cc::Layer

WebCore::GraphicsLayer

WebCore's abstract class for
representing a composited
layer.

WebCore::CompositedLayerMapping

Data Structures WebCore::RenderLayer

WebCore::CompositedLayerMapping

WebCore::GraphicsLayer

WebKit::WebLayer

WebKit::WebLayerImpl

cc::Layer

WebCore::
CompositedLayerMappin
g

The bridge between the
RenderLayer tree and the
GraphicsLayer tree.

Manages a local cluster of
GraphicsLayers, and
defines how RenderLayers
map to GraphicsLayers.

Data Structures WebCore::RenderLayer

WebCore::CompositedLayerMapping

WebCore::GraphicsLayer

WebKit::WebLayer

WebKit::WebLayerImpl

cc::Layer

WebCore::RenderLayer

From compositor's
perspective, this is the class
that paints into backing
stores when requested.

Some RenderLayers own a
CompositedLayerMappin
g

Data Structures - Layer Trees
RenderLayers

Composited RenderLayers

CompositedLayerMappings

GraphicsLayers

RenderLayer paint-order tree

GraphicsLayer tree and associated CompositedLayerMappings

CompositedLayerMapping Internals
Clip

Layer

Background
Layer

Container
Layer

Main
Layer

Scrolling
Container

Negative
z-order
children

Foreground
Layer

Normal flow
children

Positive
z-order
children

Children
Clip Layer

Scrollbar
Layers

GraphicsLayers managed by CompositedLayerMapping:
Clip/container for this subtree
Clip/scroll for descendants
Always exists
Other
Layers from descendant CompositedLayerMappings

Note: the tree may change depending on which layers exist.

This is the portion of the GraphicsLayer Tree that corresponds to one composited RenderLayer.
NOTE: this slide may be out of date and inaccurate.

Why does CompositedLayerMapping
have so many GraphicsLayers?
● Creates layers for scrollbars to keep them separate from the content itself.

● Adds layers to clip a subtree or group siblings into a container
○ typically these layers do not draw content.

● Separates the Background and/or Foreground from the main layer, if
convenient/necessary
○ Currently, background only used for background-attachment: fixed.
○ Foreground used when negative z-order children have composited

content

● To group together contents that would scroll

● For mask and reflection layers (these are implicit layers in the composited
tree)

● GraphicsLayerChromium ::paint() - invokes painting for a particular composited layer.

○ RenderLayer::paintLayerContents () - recurses through the entire subtree (except
descendant composited content), and paints any content that matches the "phase" of this
particular composited layer.

● RenderLayerCompositor ::updateCompositingLayers () - computes the composited
layer tree given the render tree.

○ RenderLayerCompositor ::computeCompositingRequirements () - determines
which RenderLayers should be composited, allocates/de-allocates backings accordingly.

○ RenderLayerCompositor ::rebuildCompositingLayerTree () - reconstructs the
composited layer tree (including tree topology and composited layer properties) based on
which RenderLayers were chosen to be composited.

Code Paths - Overview

Code Paths
RenderLayer::paintLayerContents(...)

● Code reaches here from a sequence of callbacks from
GraphicsLayerChromium::paint()

● Receives a GraphicsContext* that represents the composited layer's
backing store

● Receives flags that allow the entire subtree to filter what it draws
○ GraphicsLayerPaintingPhase

The compositor takes control of when to paint, and gives RenderLayers the
appropriate context and paint phase.

Code Paths
RenderLayerCompositor ::computeCompositingRequirements ()

● Recursively checks children, in correct paint order, to decide if any child should become
composited.

○ RenderLayerCompositor ::needsToBeComposited ()
○ RenderLayerCompositor ::requiresCompositingLayer ()
○ Maintain CompositingState during recursion

■ Tracks whether overlap testing is needed, or can be avoided to save computation
■ Indicates whether something in the subtree is already composited, allowing

subsequent layers / ancestors to make more intelligent decisions

● Maintain an OverlapMap of rectangles from previously composited content
○ Anything that overlaps existing composited content (in the same compositing container)

must also be composited
○ Uses a RenderGeometryMap to keep track of how to convert bounds into a common

space for overlap testing.
○ Maintains a stack of lists. Stack is pushed when entering a container layer that doesn't

need to test overlap outside its context (i.e. a composited container)

Code Paths
RenderLayerCompositor ::rebuildCompositingLayerTree ()

● Calls methods for each CompositedLayerMapping to configure its chunk of the composited
GraphicsLayer tree.

○ Recall previous slide about CompositedLayerMapping internals.
○ CompositedLayerMapping ::updateGraphicsLayerConfiguration () -

Determines which internal GraphicsLayers will exist, and computes the tree topology
among the existing layers.

■ Each GraphicsLayer is assigned a specific "phase" to paint
● explicit phases - background, foreground, mask
● implicit phases by having a different paint code path than the usual - scrollbars

○ CompositedLayerMapping ::updateGraphicsLayerGeometry () - Sets various
properties for each composited layer, such as bounds, position, visibility, transforms,
opacity, etc.

● Children GraphicsLayers are collected by recursively calling
rebuildCompositingLayerTree ()

○ These children are appended to the correct GraphicsLayer from the ancestor
CompositedLayerMapping .

○ This is the step that stitches together the entire composited tree
○ Scrollbars are handled here in some cases.

The Dark Side of
Compositing

Compositing Philosophy

The ideal academic approach:
Optimize the tradeoff between gains of compositing versus
the additional computation costs and extra memory costs.

The real implementation, currently:
Composite layers when it might be beneficial, and blindly
accept the resulting overhead.

Overheads of Compositing

● Computational cost of determining how to
group content into composited layers
○ Checking for overlap to ensure correctness is a

significant part of the cost.

● Computational cost of managing yet another
layer tree (actually, three more layer trees for
Chromium)

● Increased memory cost of providing a
backing-store for each composited layer that
draws content

Some Compositing Issues
In theory, compositing should:
● Render exactly the same as it would without

compositing
○ Reality: Antialiasing around edges, but not inside
○ Reality: LCD Text Antialiasing is not always feasible to

do on composited layers

● Render at least as fast, and usually faster
○ Reality: Compositing may not help if we have to

repaint everything all the time, anyway
○ Reality: Rasterization / shaders / blitting can

sometimes become a bandwidth bottleneck that is
more costly than painting to a single backing store in
the first place

Thank you!

Questions and feedback:
graphics-dev@chromium.org

