Lecture 3: Principles of Data
Modelling with MongoDB

Quan Nguyen, Ph.D.
Assistant Professor
Department of Computing Science

yl-lv%hlgESON Sep 16, 2025
UNIVERSITY

Reminder

e Sign up for Github student developer pack
(https://education.github.com/pack)
e Upload letter of enroliment to verify your student status

Benefits:

o GitHub Copilot Pro — your Al coding assistant
o $50 credit for MongoDB Atlas

https://education.github.com/pack

O Mm10 $0.08/hour

RECOMMENDED

Dedicated Clusters for development
environments and low-traffic applications.

STORAGE RAM vCPU
10 GB 2GB 2 vCPUs
Features

v Flexible backups €

v Zero-downtime cluster scaling €
v Performance diagnostic tools €
v Additional search indexes

v Uptime SLA ©

O Flex From $0.011/hour
Up to $30/month

MINIMUM UPGRADE

For application development and testing, with
on-demand burst capacity for unpredictable
traffic.

STORAGE RAM vCPU
5GB Shared Shared
Features

v Basic backups €
v Upgradeable €
v Pay As You Go pricing

¥ On-demand burst capacity

O Free

CURRENT

For learning and exploring MongoDB in a cloud
environment.

STORAGE RAM vCPU
512 MB Shared Shared
Features

v Free forever

Learning objectives

e Why data modelling is important
e The key principle of data modelling in MongoDB
e Techniques to develop a data model

Why do we model?

We model to face constraints and answer to constraints

So we can store, query, and use resources optimally!

YAy,
(>0

physical

o0

o0

oo

C

hardware

g

©

J

software

Case study

You are hired to build a database
for a Chef social network
applications

()
T_
- @ v ()

Articles Categories and tags Comments

What questions would you ask?

e \What does my application do?

What data will | store?
What are the relationships between
data?

e How do users will access the data?
e \What data is the most valuable?

SQL solution ER diagram

In SQL, there will be only a single optimal form that
satisfy all the normalization rules

MongoDB: 1, 2, or more collections?

The optimal groupings will be determined by workload!

Tags[]
. name
e URL

Tags[]
e name

Categories [] e URL

. name or
e URL Categories []
e name

. URL

Comments []
e name
e URL

. text

e home_phone
e work_phone

“Data that are access together
should be stored together”

Data modelling methodology

Schema
Workload EEm— MongoDB

Relations

Patterns

SQL MongoDB

1. Model 1. Workload identification
2. Workload identification 2. Model

Data modelling methodology

Workload
- size the data
- quantify the operations

- qualify the operations

Relationships

Patterns

Example: listings operations

Type Operation Information Frequency Criticality
write | new articles author, text 10 per day High
write = comments user 10 K per day Medium

(1000 / article)

read reading an article id, text, comments 10 M per day | Medium

read analytical requests = articles, comments, clicks, ... = 10 per hour Low

Details of operations

Attribute | Details
| Description read an article and comments
| Type | read
| Frequency | 10 M per day (115/ second)
| Latency | 10 ms
| Size | 5000 bytes (article) + 1000 * 1000 bytes (comments)
| Data lifespan | 3 years fast access (hot data), 10 years archives (cold data)

Security GDPR?

Relationships

Workload

Relationships
- identify the relationships

- quantify les relationships
- embed or reference/link

Patterns

Schema
MongoDB

“Data that are access together
should be stored together”

Car in SQL Car in MongoDB

Relationship types

One-to-one
One-to-many
Many-to-many

2 ways to represent relationships

Embedding
Referencing

Relationship types: One-to-one

Embedding

" id": ObjectId("customerIdl"),
"name" : "Jane Smith",
"email": "jane.smith@example.com" ,
"profile": {
"address": "123 Main St",
"phone": "555-1234"

Relationship types: One-to-one

Referencing option 1: When the app primarily
reads the customer collection

" id": ObjectId("customerIdl"), "_id": ObjectId("profileIdl"),
"name": "Jane Smith", "address": "123 Main St",
"email": "jane.smith@example.com", "phone": "555-1234"

"profile id": ObjectId("profileIdl") }

Relationship types: One-to-one

Referencing option 2: When the app primarily
reads the profile collection

" id": ObjectId("customerIdl"), "_id": Objectld("profileldl"),
"name": "Jane Smith", "address": "123 Main St",
"email": "jane.smith@example.com" "phone": "555-1234",

"customer id": ObjectId("customerIdl")

Relationship types: One-to-many

Embedding

" id": ObjectId("chefIdl"),

"name": "Gordon Ramsay",
"specialty": "British cuisine",
"recipes": [

{
"title": "Beef Wellington",

"ingredients": ["beef", "mushrooms", "puff pastry"],
"instructions": "Wrap the beef in mushrooms and puff
pastry, then bake."

b,

{
"title": "Scrambled Eggs",
"ingredients": ["eggs", "butter", "salt"],
"instructions": "Whisk eggs with butter and cook

slowly."

Embed the “many” side as
an array of subdocuments in
the “one” side

Possibility of unbounded
document?

Relationship types: One-to-many

"_id": ObjectId("recipeIdl"),

Referencing option 1

"title": "Beef Wellington",
{ "ingredients": ["beef", "mushrooms", "puff pastry"],
"instructions": "Wrap the beef in mushrooms and puff

" id": ObjectId("chefIlIdl"),
- pastry, then bake."

"name": "Gordon Ramsay", }
"specialty": "British
cuisine",

"recipe ids": "_id": ObjectId("recipeId2"),

[ObjectId("recipeIdl") , "title": "Scrambled Eggs",
i) "ingredients": ["eggs", "butter", "salt"],
ObjectId("recipeId2")] , , , ,
"instructions": "Whisk eggs with butter and cook

]' slowly."
}

Relationship types: One-to-many

Referencing option 2 "_id": ObjectId("recipeldl")
"title": "Beef Wellington",
{ "ingredients": ["beef", "mushrooms", "puff pastry"],
"instructions": "Wrap the beef in mushrooms and puff

" id": ObjectId("chefIdl"),

pastry, then bake.",
"name . : "Gordon Ramsay" , \"chef_id" . ObjectId("ChefIdl")

"specialty": "British }
cuisine"}

" id": ObjectId("recipeId2"),

"title": "Scrambled Eggs",

"ingredients": ["eggs", "butter", "salt"],

"instructions": "Whisk eggs with butter and cook
lowly.",

"chef_ id": ObjectId("chefIdl")

Relationship types: Many-to-many

Embedding author info in the book collections

| - Assumptions:
_id: "book0o01", _id: "book002",
title: "Cell Biology", title: "Organic Chemistry", - EaCh bOOk was Written
authors: [authors: [Onl b ”
{ { y by a sma
author_id: "authori24", author_id: "author29e", number Of authors
name: "Ellie Smith" name: "Jane James" .
}) }, - The author details
¢ | : | tend to remain static
author_id: "author381", author_id: "author381",
name: "John Palmer" name: "John Palmer" - User Want tO access
. . author information and

’ book together!

Relationship types: Many-to-many

Referencing book IDs in the author collection

{ Assumptions:
" id": - Each author could
ObjectId("12hv92fse224™), have Written 3 |arge
"author": "Jone Palmer",
. - number of books.
bOOk_ld :

[ObjectId("sg3b23"),
ObjectId("47m878gfsw") ,

..]

Embed vs referencing

0
Tabular/Relational Embedding is using

one collection in
MongoDB

How many is ‘many’?

name

Reference

When the “many” side is a huge
number

For integrity on write operations
on many-to-many

When a piece is frequently
used, but not the other and
memory is an issue

Embed

For integrity of read operations
For integrity of write operations
on one-to-one and one-to-many
For data that is deleted or
archived together

By default

Embedding

5~ g Single query to

retrieve data

Single operation to
update/delete data

Data duplication

Large documents

Referencing
Qy No duplication

o> Smaller documents

\
"

/g Need to join data from
°/ multiple documents

Activity

You are designing a MongoDB database for a university management
system. The database needs to store information about students and the
courses they are enrolled in. Each student can enroll in multiple courses,
and each course can have multiple students enrolled.

You can assume some courses could have hundreds of enrolled students.
Each student can enroll in a few courses (e.g., up to 5 courses), and the
course details are relatively static.

Given the case study above, how would you model the relationship between
students and courses in MongoDB? For each collection (students,
courses), explain your choice of whether to use embedding or referencing,
explicitly state your assumptions

Solution

Many-to-many relationship. Each student can enrol in multiple courses, each
course has multiple enrolled students.

e Students Collection: Embed the course information inside the student
document. This makes sense given the small number of courses per student,
and it provides fast read performance when retrieving student and course
details.

e Courses Collection: Use referencing to store only student IDs in the course
document, since embedding hundreds of students per course would create
large documents that are inefficient to manage.

Conclusion

- Data that are accessed together should stay together
- ldentify workload before modelling
- Two ways to model relationships: embed & reference

