
Lecture 3: Principles of Data
Modelling with MongoDB

Quan Nguyen, Ph.D.
Assistant Professor

Department of Computing Science

Sep 16, 2025

Reminder
● Sign up for Github student developer pack

(https://education.github.com/pack)
● Upload letter of enrollment to verify your student status

Benefits:

● ✅ GitHub Copilot Pro – your AI coding assistant
● ✅ $50 credit for MongoDB Atlas

https://education.github.com/pack

Learning objectives
● Why data modelling is important
● The key principle of data modelling in MongoDB
● Techniques to develop a data model

Why do we model?

We model to face constraints and answer to constraints
So we can store, query, and use resources optimally!

Case study
You are hired to build a database
for a Chef social network
applications

What questions would you ask?

● What does my application do?
● What data will I store?
● What are the relationships between

data?
● How do users will access the data?
● What data is the most valuable?

SQL solution ER diagram
In SQL, there will be only a single optimal form that
satisfy all the normalization rules

MongoDB: 1, 2, or more collections?
The optimal groupings will be determined by workload!

“Data that are access together
should be stored together”

Data modelling methodology

SQL MongoDB

1. Model
2. Workload identification

1. Workload identification
2. Model

Data modelling methodology

Example: listings operations

Details of operations

Relationships

Car in SQL Car in MongoDB

“Data that are access together
should be stored together”

Relationship types
One-to-one
One-to-many
Many-to-many

2 ways to represent relationships
Embedding
Referencing

Relationship types: One-to-one

Embedding

{

 "_id": ObjectId("customerId1"),

 "name": "Jane Smith",

 "email": "jane.smith@example.com" ,

 "profile": {

 "address": "123 Main St",

 "phone": "555-1234"

 }

}

Relationship types: One-to-one

{

 "_id": ObjectId("customerId1"),

 "name": "Jane Smith",

 "email": "jane.smith@example.com",

 "profile_id": ObjectId("profileId1")

}

Referencing option 1: When the app primarily
reads the customer collection

{

 "_id": ObjectId("profileId1"),

 "address": "123 Main St",

 "phone": "555-1234"

}

Relationship types: One-to-one

{

 "_id": ObjectId("customerId1"),

 "name": "Jane Smith",

 "email": "jane.smith@example.com"

}

Referencing option 2: When the app primarily
reads the profile collection

{

 "_id": ObjectId("profileId1"),

 "address": "123 Main St",

 "phone": "555-1234",

 "customer_id": ObjectId("customerId1")

}

Relationship types: One-to-many

Embedding
{

 "_id": ObjectId("chefId1"),

 "name": "Gordon Ramsay",

 "specialty": "British cuisine",

 "recipes": [

 {

 "title": "Beef Wellington",

 "ingredients": ["beef", "mushrooms", "puff pastry"],

 "instructions": "Wrap the beef in mushrooms and puff

pastry, then bake."

 },

 {

 "title": "Scrambled Eggs",

 "ingredients": ["eggs", "butter", "salt"],

 "instructions": "Whisk eggs with butter and cook

slowly."

 }

]

}

Embed the “many” side as
an array of subdocuments in
the “one” side

Possibility of unbounded
document?

Relationship types: One-to-many

{

 "_id": ObjectId("chefId1"),

 "name": "Gordon Ramsay",

 "specialty": "British

cuisine",

 "recipe_ids":

[ObjectId("recipeId1"),

ObjectId("recipeId2")]

}

Referencing option 1

{

 "_id": ObjectId("recipeId2"),

 "title": "Scrambled Eggs",

 "ingredients": ["eggs", "butter", "salt"],

 "instructions": "Whisk eggs with butter and cook

slowly."

}

{

 "_id": ObjectId("recipeId1"),

 "title": "Beef Wellington",

 "ingredients": ["beef", "mushrooms", "puff pastry"],

 "instructions": "Wrap the beef in mushrooms and puff

pastry, then bake."

}

Relationship types: One-to-many

{

 "_id": ObjectId("chefId1"),

 "name": "Gordon Ramsay",

 "specialty": "British

cuisine"}

Referencing option 2

{

 "_id": ObjectId("recipeId2"),

 "title": "Scrambled Eggs",

 "ingredients": ["eggs", "butter", "salt"],

 "instructions": "Whisk eggs with butter and cook

slowly.",

 "chef_id": ObjectId("chefId1")

}

{

 "_id": ObjectId("recipeId1")

 "title": "Beef Wellington",

 "ingredients": ["beef", "mushrooms", "puff pastry"],

 "instructions": "Wrap the beef in mushrooms and puff

pastry, then bake.",

 "chef_id": ObjectId("chefId1")

}

Relationship types: Many-to-many
Embedding author info in the book collections

Assumptions:
- Each book was written

only by a small
number of authors

- The author details
tend to remain static

- User want to access
author information and
book together!

Relationship types: Many-to-many

Referencing book IDs in the author collection
{

 "_id":

ObjectId("12hv92fse224"),

 "author": "Jone Palmer",

 "book_id":

[ObjectId("sg3b23"),

ObjectId("47m878gfsw"),

...]

}

Assumptions:
- Each author could

have written a large
number of books.

Embed vs referencing

How many is ‘many’?

Reference

1. When the “many” side is a huge
number

2. For integrity on write operations
on many-to-many

3. When a piece is frequently
used, but not the other and
memory is an issue

Embed
1. For integrity of read operations
2. For integrity of write operations

on one-to-one and one-to-many
3. For data that is deleted or

archived together
4. By default

Activity
You are designing a MongoDB database for a university management
system. The database needs to store information about students and the
courses they are enrolled in. Each student can enroll in multiple courses,
and each course can have multiple students enrolled.
You can assume some courses could have hundreds of enrolled students.
Each student can enroll in a few courses (e.g., up to 5 courses), and the
course details are relatively static.

Given the case study above, how would you model the relationship between
students and courses in MongoDB? For each collection (students,
courses), explain your choice of whether to use embedding or referencing,
explicitly state your assumptions

Solution
Many-to-many relationship. Each student can enrol in multiple courses, each
course has multiple enrolled students.

● Students Collection: Embed the course information inside the student
document. This makes sense given the small number of courses per student,
and it provides fast read performance when retrieving student and course
details.

● Courses Collection: Use referencing to store only student IDs in the course
document, since embedding hundreds of students per course would create
large documents that are inefficient to manage.

Conclusion
- Data that are accessed together should stay together
- Identify workload before modelling
- Two ways to model relationships: embed & reference

