
Concurrent Async Iterators
update/discussion

github.com/tc39/proposal-async-iterator-helpers

Some good discussion in the issues!

https://github.com/tc39/proposal-async-iterator-helpers

x = asyncIteratorOfUrls
 .map(u => fetch(u))

await Promise.all([
 x.next(),
 x.next(),
])

Recap: concurrency in async iterator helpers

Things this gives you:

- Concurrency within a mapper.

- Concurrency between mapper and underlying
producer.

- Concurrency is driven by the consumer.

asyncIteratorOfUrls
 .map(u => fetch(u))
 .buffered(2)

Includes extra method to eagerly buffer

Rust has a similar helper

What's not in the MVP?

Unordered helpers

Forcing these to be order-preserving gives up a fair bit of
possible concurrency.

A lot of times the user doesn't need order.

But the space of designs for non-order-preserving
transforms is vast. So leave it for a followup.

Concurrency for consuming helpers

`.forEach`, `.find`, etc will continue to be sequential.

Concurrent versions of these would be nice but there is no
obvious best way to do it.

We might be able to add a second "concurrency"
parameter later, but that may not be web-compatible.

Racing promises

`.toAsync()` turns a (potentially infinite) iterator of
Promises into an async iterator, preserving order.

Another possible transform turns a (finite) iterator of
Promises into an async iterator by yielding results in the
order in which they settle.

Useful, but not really an async iterator helper, and
potentially redundant with unordered helpers.

https://github.com/tc39/proposal-async-iterator-helpers/issues/21

Merging/racing iterators

`AsyncIterator.race([iter1, iter2])` to merge
multiple async iterators by pulling from all of them and
yielding results as they come in would be nice, someday.

https://github.com/tc39/proposal-async-iterator-helpers/issues/15

Splitting iterators

`[a, b] = asyncIter.divide(2)` giving you 2 iterators
which pull from the same underlying source lets you do
concurrency in an entirely different way, especially when
combined with `.race()` from previous slide.

It is one possible solution for the "concurrency when we
don't care about order" problem.

https://github.com/tc39/proposal-async-iterator-helpers/issues/20#issuecomment-2125380815

Splitting iterators

AsyncIterator.merge(
 tasks.split(2).map(worker =>
 worker.map(work).filter(predicate)
)
).toArray();

Splitting iterators

Again, not in the MVP. May or may not make sense to
include in a followup.

Limiting concurrency

If your underlying iterator does not support concurrent
calls to `.next()`, but you want to do concurrent `.map()`
over it, you want to limit concurrency of the underlying
thing. This doesn't include anything for that. Notably,
`buffered(N)` allows pulling more than `N` times.

Nor does it include a way to limit concurrency of your
callbacks, though we should do that (seperately).

https://github.com/tc39/proposal-async-iterator-helpers/issues/8
https://www.npmjs.com/package/throat
https://www.npmjs.com/package/throat

Basically: the absolute minimum
possible set of things.

What is included?

`.map`, `.filter`, `.flatMap`, `.toAsync` supporting
concurrent calls to `.next`.

`.buffered(N)` for doing such calls.

All the other helpers from sync `Iterator`, with no*
additional affordances for concurrency.

Current work / considerations

Original consistency property was too strong

Originally: "you get the same results in the same order as if
you had made the calls sequentially".

Now "... as long as there are no errors".

This allows results of `.map()` to settle earlier.

Original consistency property was too strong

let iter = naturals.map(async x => {
 if (x === 0) {
 await sleep(5);
 throw new Error; }
 return x;
});

iter.next(); iter.next();
// 2nd promise shouldn't have to wait for 1st

`.filter()` still has to settle in order

let slowThenFast =
 [sleep(5).then(x => 1), 2]
 .values().toAsync();

let filtered = slowThenFast.filter(x => x > 0);

filtered.next();
filtered.next(); // cannot resolve before 5s

Closing iterators

Calling `helper.return()` does two things:
1. marks the iterator as closed
2. calls `.return()` on the underlying iterator(s).

Being closed means future calls to `.next()` settle
immediately with `{done: true}`, matching sync helpers.

But earlier promises are not immediately resolved.

let iter = slow.map(fn);

let x = iter.next(); // note lack of awaits

iter.return();
// marks `iter` as closed
// calls slow.return()
// x might still end up w/ { done: false }

let y = iter.next();
// resolves immediately w/o calling slow.next()

Closing iterators

The callback throwing is treated the same as `.return()`
being called: marks this iterator as closed, and calls
`.return()` on the underlying iterator(s).

Closing iterators

Errors from the underlying thing also mark this iterator as
closed.

Should `.drop()` drop concurrently?

That is, should it `await` each dropped promise between
each of its calls to `underlying.next()`?

My inclination: yes, since that's the most predictable thing
and avoids walking past errors. Maybe a boolean
parameter to opt in to not `await`ing?

`.buffered` is not eager

Calling `.buffered(N)` doesn't start doing work until first
pulled from, but thereafter keeps its buffer full.

We could have an opt-in option to start work as soon as
the iterator is constructed; it's hard to do otherwise.

Do vended promises count towards the buffer?

`.buffered(5)` creates an iterator with an internal buffer
of 5 promises, which it starts filling up when you first pull
from it. Does the one you've pulled count towards that 5
while it's still pending?

for await (let x of it.map(fn).buffered(5));

Does that call `fn` 5 times concurrently, or 6?

Discussion

