
Hardware Workshop:

Arduino
A super fun knowledge share and prototyping workshop for Vigets

01 Background

Agenda

02 Arduino Platform

04 Getting Started

05 Helpful Resources

03 Prototyping Basics

Let’s Build Something!

Background

3

Development boards + programming language + IDE

What is this thing?

Why is it a thing?
• A teaching tool - developed by the Interaction Design Institute Ivrea (Italy) to

teach students about electronics and programming.
• Open source - open, inexpensive, and relatively easy to use.
• Widely adopted - supported by a huge maker-hobbyist community.
• Resources - a proliferation of boards and open-source libraries available for use.

Specifics
• IDE runs on Windows, Mac, and Linux. Free download.
• You can build your own breakout boards for controlling peripherals.
• The “OG” Arduino Uno R3 costs $22; You can find beginner kits from $60-100.

Budget FriendlyAdaptableAccessible

What it can do

Microcontrollers
• Onboard the Arduino board.
• Integrated Circuit (IC) with five components:

• CPU
• RAM
• Clock
• ROM
• I/O

• “Single chip computer”
• Different from a microprocessor, which

requires an operating system.

Simple. Efficient. Forever.
• Power the chip, and it does what you tell it to do.
• Can only run one control loop at a time.
• It does that one thing efficiently, forever.

Why should I care?
• Internet of Things → a network of internet-connected (“smart”) devices that

traditionally are not connected to the internet.
• 30 billion devices deployed by 2020.
• Powered by microcontrollers and boards like that of Arduino.
• Affects almost every industry where physical data can be leveraged
• A peek under the hood!

Arduino Platform

11

Brain
• AtMEGA328P
• 32 pin microcontroller from Atmel

• Each pin serves different and/or
multiple functions

• 32 KB of memory
• Features:

• Analog-Digital Converter
• Digital I/O
• Common modes of serial

communication

1

16

17

32

Board

Digital I/O pins

Board

Digital I/O pins

Analog Input pins

Board

Digital I/O pins

Analog Input pins

Power Connections

Board

Digital I/O pins

Analog Input pins

Power Connections

RESET button

Board

Digital I/O pins

Analog Input pins

Power Connections

USB-B port

RESET button

Board

Digital I/O pins

Analog Input pins

Power Connections

USB-B port

Power supply jack

RESET button

• C++ with helpful, built-in, libraries
that abstract away the details

• Compiles your code and programs
your board via USB → with a click of
a button!

• Highly intuitive and sanitized
embedded programing experience

IDE + Firmware

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment i every iteration

 if (counter > 100) { // reset counter at 100 with MYCONSTANT
 counter = MYCONSTANT;
 }
}

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment counter every iteration

 if (counter > 100) { // reset counter after 100
 counter = 0;
 }
}

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment counter every iteration

 if (counter > 100) { // reset counter at 100 w/ MYCONSTANT
 counter = MYCONSTANT;
 }
}

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment counter every iteration

 if (counter > 100) { // reset counter at 100 w/ MYCONSTANT
 counter = MYCONSTANT;
 }
}

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment counter every iteration

 if (counter > 100) { // reset counter at 100 w/ MYCONSTANT
 counter = MYCONSTANT;
 }
}

Firmware
#include <MyLibrary.h> // include a library
#define MYCONSTANT 0 // define a constant
int counter; // define counter, a global variable

void setup() {
// put your setup code here, to run once:
counter = 0; // initialize counter

}

void loop() {
// put your main code here, to run repeatedly:

 counter = counter+1; // increment counter every iteration

 if (counter > 100) { // reset counter at 100 w/ MYCONSTANT
 counter = MYCONTANT;
 }
}

Prototyping Basics

26

• Resistors? Capacitors? LEDs? Oh my.
• The key ideas (for now):

• Voltage (V) is the source of electricity
• Current (I) is the flow of electricity
• Electricity flows from high voltage to low voltage (+ to -)
• mass resists the flow of electricity + the amount a given object resists that

flow is called its Resistance (R)

Some basic electronics

• Voltage = amount of water. Current = flow rate. Resistance = pipe size.

Water Tank Analogy*

*credit to SparkFun

• Voltage = amount of water. Current = flow rate. Resistance = pipe size.

Water Tank Analogy*

*credit to SparkFun

Current

• Voltage = amount of water. Current = flow rate. Resistance = pipe size

Water Tank Analogy*

*credit to SparkFun

Another analogy...

*credit to the internet (?)

Basic Circuit

Getting Started

33

• https://www.arduino.cc/
• Arduino starter kit ~ $80

• Comes w/ servo motors, LEDs, resistors, capacitors, start-up guide, wires etc.
• Arduino forum and blog
• Start small!

• more equipment = more capabilities = more money

Arduino.cc

https://www.arduino.cc/
https://forum.arduino.cc/
https://blog.arduino.cc/

Helpful Resources

35

Maker Community
• A vibrant online community to help you level up
• Our favorite resources:

• Youtube!
• Hacker Shack
• How To Mechatronics

• Hackaday
• And its dev community: hackady.io

• Reddit
• StackExchange

https://www.youtube.com/channel/UCEcNXmr7DYq1XxpWHSxaN0w
https://www.youtube.com/user/DejanNedelkovski
https://hackaday.com/
https://hackaday.com/tag/hackaday-io/

Let’s Build Something

37

• Step 1 → Toggle 1 LED
• Step 2 → Cycle 3 LEDs, “traveling light” functionality
• Step 3 → When motion sensor is flicked, flash all 3 LEDs 3 times

Today’s Build:

Setup
• Get into pairs
• Gather the following items:

• 1 Arduino Uno
• 1 USB-B cable
• 3 LEDs
• 3 resistors (1kΩ)
• 7 wires
• 1 vibration sensor

LED
• “Light Emitting Diode”

• Emits light
• Current only flows one way

• Two leads: one positive (long), one negative (short)

+
-

Breadboard

Step 0
RED = Vin
BLACK = GND

Step 1
RED = POWER (PIN 3)
BLACK = GND

• Arduino has a built-in serial monitor → a luxury
• No way to directly print output

• simple LED circuit = your best friend

Debugging

Step 2
RED = POWER (PIN 3,4,5)
BLACK = GND

• Don’t worry about what it does
• Positive side (long leg), negative side (short leg)
• Why are we using it?

• To reduce the messy signals

Capacitor

Step 3
RED = POWER (PIN 3,4,5)
BLACK = GND
GREEN = SIGNAL (PIN 2)

sensor

