
Sorting: Quick Sort



Quick Sort

Divide: Partition the array into two sub-arrays

A[p . . q-1]  and A[q+1 . . r] such that each element of

A[p . . q-1] is less than or equal to A[q], which in turn

less than or equal to each element of A[q+1 . . r]
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Quick Sort

Conquer: Sort the two sub-arrays A[p . . q-1]  and

A[q+1 . . r] by recursive calls to quick sort.
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Quick Sort

Combine: Since the sub-arrays are sorted in place, no

work is needed to combine them.
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Quick Sort

QUICKSORT(A, p, r)

if p< r

   then q 🡨 PARTITION(A, p, r)

             QUICKSORT(A, p, q-1)

             QUICKSORT(A, q+1, r)
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Quick Sort

PARTITION(A, p, r)

x 🡨 A[r]

i 🡨 p-1
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Quick Sort

for j 🡨 p to r-1

       do if A[j] <= x

               then i 🡨i+1

                   exchange A[i] 🡨 🡨 A[j]

exchange A[i+1] 🡨 🡨 A[r]

return i+1
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort
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Quick Sort

Worst-case partitioning:

The partitioning routine produces one sub-problem

with n-1 elements and another sub-problem with 0

elements. So the partitioning costs θ(n) time.
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Quick Sort

Worst-case partitioning:

The recurrence for the running time

    T(n)= T(n-1) + T(0) + θ(n)

           =T(n-1) + θ(n)

           =----------------- θ(n )2
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Quick Sort

Worst-case partitioning:

The θ(n ) running time occurs when the input2

array is already completely sorted – a common

situation in which insertion sort runs in O(n) time
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Quick Sort

Best-case partitioning:

The partitioning procedure produces two

sub-problems, each of size not more than n/

2.
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Quick Sort

Best-case partitioning:

The recurrence for the running time

  T(n) <= 2T(n/2) + θ(n)

           = ----- O(n lg n) 
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Quick Sort

Best-case partitioning:

The equal balancing of the two sides of the

partition at every level of the recursion

produces faster algorithm.
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Quick Sort

Balanced partitioning:

Suppose, the partitioning algorithm always

produces 9-to-1 proportional split, which

seems quite unbalanced.
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Quick Sort

Balanced partitioning:

The recurrence for the running time

T(n) <= T(9n/10) + T(n/10) +cn

          = ------------O(n lg n)
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Quick Sort

Balanced partitioning: The recursion tree
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Quick Sort

Balanced partitioning:

In fact,  a 99-to-1 split yields an O(n lg n) running

time. Any split of constant proportionality yields a

recursion tree of depth θ(lg n)
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Quick Sort

Intuition for the average case:

It is unlikely that the partitioning always happens

in the same way at every level.
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Quick Sort

Intuition for the average case:

In the average case, PARTION produces a mix of

“good” and “bad” splits.
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Quick Sort

Intuition for the average case:

The combination of the bad split followed by the good split

produces three arrays of sizes 0,  (n-1)/2-1, and (n-1)/2 at a

combined partitioning cost of θ(n) +  θ(n-1)= θ(n)
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Quick Sort

Intuition for the average case:

A single level of partitioning produces two sub-arrays of  size

(n-1)/2 at a cost of θ(n).

n

(n-1)/2 (n-1)/2

Θ(n)
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A Randomized Version of Quick Sort

Instead of always using A[r] as the pivot, we will

use a randomly chosen element from the sub-array

A[p..r].
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A Randomized Version of Quick Sort

Because the pivot element is randomly chosen,

we expect the split of the input array to be

reasonably well balanced on average. 
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A Randomized Version of Quick Sort

RANDOMIZED-PARTITION(A, p, r)

i 🡨 RANDOM(p, r)

exchange A[r] 🡨 🡨 A[i]

return PARTITION(A, p, r)
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A Randomized Version of Quick Sort

RANDOMIZED-QUICKSORT(A, p, r)

if p<r then

           q 🡨 RANDOMIZED-PARTITION(A, p, r)

            RANDOMIZED-QUICKSORT(A, p, q-1)

            RANDOMIZED-QUICKSORT(A, q+1, r)
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Textbooks & Web References

• Text Book (Chapter 3) 
• www.visualgo.net
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Thank you 
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