
Sorting: Quick Sort

Quick Sort

Divide: Partition the array into two sub-arrays

A[p . . q-1] and A[q+1 . . r] such that each element of

A[p . . q-1] is less than or equal to A[q], which in turn

less than or equal to each element of A[q+1 . . r]

CSE@DIU 2

Quick Sort

Conquer: Sort the two sub-arrays A[p . . q-1] and

A[q+1 . . r] by recursive calls to quick sort.

CSE@DIU 3

Quick Sort

Combine: Since the sub-arrays are sorted in place, no

work is needed to combine them.

CSE@DIU 4

Quick Sort

QUICKSORT(A, p, r)

if p< r

 then q 🡨 PARTITION(A, p, r)

 QUICKSORT(A, p, q-1)

 QUICKSORT(A, q+1, r)

CSE@DIU 5

Quick Sort

PARTITION(A, p, r)

x 🡨 A[r]

i 🡨 p-1

CSE@DIU 6

Quick Sort

for j 🡨 p to r-1

 do if A[j] <= x

 then i 🡨i+1

 exchange A[i] 🡨 🡨 A[j]

exchange A[i+1] 🡨 🡨 A[r]

return i+1

CSE@DIU 7

Quick Sort

i
4653178

p, j
2

r

(a)
CSE@DIU 8

Quick Sort

465317
j
8

p, i
2

r

(b)
CSE@DIU 9

Quick Sort

4653178
p, i
2

j r

(c)
CSE@DIU 10

Quick Sort

4653178
p, i
2

j r

(d)
CSE@DIU 11

Quick Sort

465387
i
1

p
2

j r

(e)
CSE@DIU 12

Quick Sort

4657831
p
2

i rj

(f)
CSE@DIU 13

Quick Sort

4657831
p
2

i rj

(g)
CSE@DIU 14

Quick Sort

4657831
p
2

i r

(h)
CSE@DIU 15

Quick Sort

8657431
p
2

i r

(i)
CSE@DIU 16

Quick Sort

Worst-case partitioning:

The partitioning routine produces one sub-problem

with n-1 elements and another sub-problem with 0

elements. So the partitioning costs θ(n) time.

CSE@DIU 17

Quick Sort

Worst-case partitioning:

The recurrence for the running time

 T(n)= T(n-1) + T(0) + θ(n)

 =T(n-1) + θ(n)

 =----------------- θ(n)2

CSE@DIU 18

Quick Sort

Worst-case partitioning:

The θ(n) running time occurs when the input2

array is already completely sorted – a common

situation in which insertion sort runs in O(n) time

CSE@DIU 19

Quick Sort

Best-case partitioning:

The partitioning procedure produces two

sub-problems, each of size not more than n/

2.

CSE@DIU 20

Quick Sort

Best-case partitioning:

The recurrence for the running time

 T(n) <= 2T(n/2) + θ(n)

 = ----- O(n lg n)
CSE@DIU 21

Quick Sort

Best-case partitioning:

The equal balancing of the two sides of the

partition at every level of the recursion

produces faster algorithm.

CSE@DIU 22

Quick Sort

Balanced partitioning:

Suppose, the partitioning algorithm always

produces 9-to-1 proportional split, which

seems quite unbalanced.

CSE@DIU 23

Quick Sort

Balanced partitioning:

The recurrence for the running time

T(n) <= T(9n/10) + T(n/10) +cn

 = ------------O(n lg n)
CSE@DIU 24

Quick Sort

Balanced partitioning: The recursion tree

CSE@DIU 25

Quick Sort

Balanced partitioning:

In fact, a 99-to-1 split yields an O(n lg n) running

time. Any split of constant proportionality yields a

recursion tree of depth θ(lg n)

CSE@DIU 26

Quick Sort

Intuition for the average case:

It is unlikely that the partitioning always happens

in the same way at every level.

CSE@DIU 27

Quick Sort

Intuition for the average case:

In the average case, PARTION produces a mix of

“good” and “bad” splits.

CSE@DIU 28

Quick Sort

Intuition for the average case:

The combination of the bad split followed by the good split

produces three arrays of sizes 0, (n-1)/2-1, and (n-1)/2 at a

combined partitioning cost of θ(n) + θ(n-1)= θ(n)

n

n-1

(n-1)/2-1 (n-1)/2

0

Θ(n)

CSE@DIU 29

Quick Sort

Intuition for the average case:

A single level of partitioning produces two sub-arrays of size

(n-1)/2 at a cost of θ(n).

n

(n-1)/2 (n-1)/2

Θ(n)

CSE@DIU 30

A Randomized Version of Quick Sort

Instead of always using A[r] as the pivot, we will

use a randomly chosen element from the sub-array

A[p..r].

CSE@DIU 31

A Randomized Version of Quick Sort

Because the pivot element is randomly chosen,

we expect the split of the input array to be

reasonably well balanced on average.

CSE@DIU 32

A Randomized Version of Quick Sort

RANDOMIZED-PARTITION(A, p, r)

i 🡨 RANDOM(p, r)

exchange A[r] 🡨 🡨 A[i]

return PARTITION(A, p, r)

CSE@DIU 33

A Randomized Version of Quick Sort

RANDOMIZED-QUICKSORT(A, p, r)

if p<r then

 q 🡨 RANDOMIZED-PARTITION(A, p, r)

 RANDOMIZED-QUICKSORT(A, p, q-1)

 RANDOMIZED-QUICKSORT(A, q+1, r)

CSE@DIU 34

Textbooks & Web References

• Text Book (Chapter 3)
• www.visualgo.net

CSE@DIU 35

Thank you

CSE@DIU 36

