Sorting: Quick Sort

Divide: Partition the array into two sub-arrays
Alp..qg-1] and A[g+1 .. r] such that each element of

Alp .. g-1] 1s less than or equal to A[q], which 1n turn

less than or equal to each element of A[g+1 . .]

Conquer: Sort the two sub-arrays A[p . . g-1] and

A[g+1 .. r] by recursive calls to quick sort.

Combine: Since the sub-arrays are sorted in place, no

work 1s needed to combine them.

QUICKSORT(A, p, r)
if p<r
then q U PARTITION(A, p, r)
QUICKSORT(A, p, g-1)

QUICKSORT(A, g+1, 1)

PARTITION(A, p,)
x 0 Alr]

i p-1

forj U ptor-1
do if A[j] <=x
then 1 [i+1
exchange A[1] U O A[j]
exchange A[i1+1] U O A[r]

return 1+1

P,]

(@)

P, I

2 I¢

(b)

(c)

CSE@DIU

10

(d)

CSE@DIU

11

N O

i E

(e)

CSE@DIU

12

N O

> s

(f)

CSE@DIU

13

Quick Sort

N[O

> | |-

(9)

CSE@DIU

14

Quick Sort

N[O

r
> |aEE|

(h)

CSE@DIU

15

Quick Sort

i r

N[O

3|+ [SmEE|

(i)

CSE@DIU

16

Worst-case partitioning:

The partitioning routine produces one sub-problem
with n-1 elements and another sub-problem with 0

elements. So the partitioning costs 6(n) time.

Worst-case partitioning:
The recurrence for the running time
T(n)=T(n-1) + T(0) + 6(n)
=T(n-1) + B(n)

S —— 0(n?)

Worst-case partitioning:

The 6(n?) running time occurs when the imnput
array 1s already completely sorted — a common

situation 1n which insertion sort runs in O(n) time

Best-case partitioning:

The partitioning procedure produces two

sub-problems, each of size not more than n/

2.

Best-case partitioning:
The recurrence for the running time

T(n) <=2T(1m/2) + 0(n)

R O(n 1g n)

Best-case partitioning:
The equal balancing of the two sides of the

partition at every level of the recursion

produces faster algorithm.

Balanced partitioning:

Suppose, the partitioning algorithm always
produces 9-to-1 proportional split, which

seems quite unbalanced.

Balanced partitioning:

The recurrence for the running time

T(n) <=T(9n/10) + T(n/10) +cn

S O(n Ig n)

Balanced partitioning: The recursion tree

/ \
R i (SsisrsatrEsIERIBRIOa pe TR TR ae
0 O

log; 0/g#?

log

\

10 11

/
1

2

]00

SN

i{l)

l'/ \\

CSE@DIU

----!}|-~ o&n

ssiesibn- R

seeilbe on

TIEUIIE ' 4]

versnfan- E ' F!

st LR &

Qinlgn)

25

Balanced partitioning:

In fact, a 99-to-1 split yields an O(n Ig n) running
time. Any split of constant proportionality yields a

recursion tree of depth 0(1g n)

Intuition for the average case:

It 1s unlikely that the partitioning always happens

in the same way at every level.

Intuition for the average case:

In the average case, PARTION produces a mix of

“o00d” and “bad” splits.

Intuition for the average case:

The combination of the bad split followed by the good split
produces three arrays of sizes 0, (n-1)/2-1, and (n-1)/2 at a

combined partitioning cost of O(n) + 0(n-1)=0(n)

(n-1)/2-1 (n-1)/2

CSE@DIU

Intuition for the average case:

A single level of partitioning produces two sub-arrays of size

(n-1)/2 at a cost of O(n).

CSE@DIU

30

Instead of always using A[r] as the pivot, we will

use a randomly chosen element from the sub-array

Alp..r].

Because the pivot element 1s randomly chosen,
we expect the split of the input array to be

reasonably well balanced on average.

RANDOMIZED-PARTITION(A, p, 1)
i 1 RANDOM(p, r)
exchange A[r] U 0 AJi]

return PARTITION(A, p, 1)

RANDOMIZED-QUICKSORT(A, p, 1)

if p<r then
q U RANDOMIZED-PARTITION(A, p, 1)
RANDOMIZED-QUICKSORT(A, p, g-1)

RANDOMIZED-QUICKSORT(A, g+1, 1)

Textbooks & Web References

* Text Book (Chapter 3)

* www.visualgo.net

Thank you

