Generative Adversarial Networks in TMVA

MENTORS

Manos Stergiadis Gerardo Gutiérrez Sergei Gleyzer

PRESENTED BY

Ashish Kshirsagar

INTRODUCTION

- Generative Adversarial Networks comprises of two models trained simultaneously by an adversarial process. A generator learns to create images that looks real i.e. similar to the one in the dataset, while a discriminator learns to classify whether the input image is real or fake (output by the generator)
- **Generator**: Inputs random noisy image and gives an output image resembling that in the input data distribution.
- Discriminator: Inputs an image and tell whether that is from the dataset or from the generator

CURRENT IMPLEMENTATION

- Input data formatting script to convert image into TTree format.
- MethodGAN class contains the implementation of Generator and Discriminator.
- Architecture passed using input string (TString) format.
- Tests passed but the function not aggregating.

DELIVERABLES

- MethodGAN.h, MethodGAN.cxx
 - Discriminator Architecture :
 - Input Layer
 - Convolution Layer, RELU, Avg. Pooling Layer
 - Dense Layer, Sigmoid
 - Generator Architecture :
 - Input layer
 - Dense Layer
 - Transpose Convolutional Layers, RELU
 - Output Layer, tanh
 - Generalised GAN with all the parameters as input including the layers details.
 - Specified training parameters

ISSUES

- Modifications done in MethodDL.h.
- The input transformation script needed to be integrated
- Building the tests
- Testing the Convolution Layers
- Implementation of CGAN

TASKS

- Testing the convolution layer
- Implementation of Vanilla version on MNIST dataset
- Implementation of DCGANs
- Implementation on generalised dataset
- Implementation of ConditionalGANs