MLDS HW0
TAs
ntu.mldsta@gmail.com
Outline
- Task Description
- 加簽規定
- Kaggle Rules
- Q&A
Task Description - Text Sentiment Classification
There is no limitation on the method you use to solve the task as long as it’s ML based.
Task Description - Dataset
本次作業為twitter上收集到的推文,每則推文都會被標注為正面或負面,如:
除了有label的data以外,我們還額外提供了120萬筆左右沒有label的data
1:正面
0:負面
Task Description - Data format
Three files provided on kaggle
training_label.csv
labeled training data with each line being <sentence label> +++$+++ <sentence>
training_noabel.csv
unlabeled training data with each line being <sentence>
testing_data.csv
testing data for submission with header id,text and each of the following line being <sentence id>,<sentence>
Task Description - Submission format
Submissions should follow the format in sampleSubmission.csv
加簽規定
To join the class, you will have to...
參加Kaggle並且通過門檻
大學部學生:通過Simple Baseline 研究生以上:通過Strong Baseline
如果太多同學符合資格將按照通過Baseline的時間順序加簽, Leaderboard 最後排名成績並不影響加簽順序
TA會在2018/3/6 23:59:59 之前將符合加簽資格同學的授權碼寄到學校信箱(學號@ntu.edu.tw)
沒有成功加簽的同學也會收到信件,如果有問題可以直接回覆給TA詢問。
Kaggle Rules
Q&A
Email TA if you have any question.
ntu.mldsta@gmail.com