Principal Component Analysis

Concept Module 7

What is PCA?

Principal Component Analysis: (PCA) is a method for compressing (reducing the dimension) of a dataset while preserving parts of the data with the most variability.

- Simplify storage and representation
- Simplify visualization
- Expose structure in the data

Example: 2D data

Goal: Use one number (instead of two) to represent each point.

	\mathbf{x}	\mathbf{y}			
$\mathbf{0}$	1.044267	2.110966			
$\mathbf{1}$	1.440636	2.372623			
$\mathbf{2}$	1.056300	1.872256			
$\mathbf{3}$	0.102490	2.025878			
$\mathbf{4}$	0.184354	1.352462	$\quad \stackrel{? ? ?}{ } \quad$		\mathbf{z}
---:	---:				
$\mathbf{0}$	0.024377				
$\mathbf{1}$	0.169453				
$\mathbf{2}$	0.004115				
$\mathbf{3}$	-0.266665				
$\mathbf{4}$	-0.309448				

Example: 2D data

1. Center the data by subtracting the mean from all points.
2. Find direction where data changes most.
3. Measure distance along that direction.

Geometry of PCA

Choosing the Principal Component (PC1)

- Maximize $\left(a_{1}\right)^{2}+\ldots+\left(a_{n}\right)^{2}$
- Since points are centered, same as Maximizing std(a)
- Since $\left(a_{k}\right)^{2}+\left(b_{k}\right)^{2}=\left(r_{k}\right)^{2}$, this is the same as:

How well does it do?

- We started off with points of the form $\left(\mathrm{x}_{\mathrm{k}^{\prime}} \mathrm{y}_{\mathrm{k}}\right)$.
- Pythagorean theorem: $\left(x_{k}\right)^{2}+\left(y_{k}\right)^{2}=\left(r_{k}\right)^{2}=\left(a_{k}\right)^{2}+\left(b_{k}\right)^{2}$
- Sum over k , divide by ($\mathrm{N}-1$), obtain: $\operatorname{std}(\mathrm{x})^{2}+\operatorname{std}(\mathrm{y})^{2}=(\mathrm{sa})^{2}+(\mathrm{sb})^{2}$

Total variance in the data

Example: 2D data

Mean: $(1,2)$
PC1: $(3,1)$
Data $\approx(1,2)+z(3,1)$
\(\left.\begin{array}{|rrr|}\hline \& Recipe!

\hline \& \mathbf{x} \& \mathbf{y}

\mathbf{0} \& 1.044267 \& 2.110966

\mathbf{1} \& 1.440636 \& 2.372623

\mathbf{2} \& 1.056300 \& 1.872256

\mathbf{3} \& 0.102490 \& 2.025878

\mathbf{4} \& 0.184354 \& 1.352462\end{array}\right]\)| $\mathbf{0}$ | 0.024377 |
| ---: | ---: |
| $\mathbf{1}$ | 0.169453 |
| $\mathbf{2}$ | 0.004115 |
| $\mathbf{3}$ | -0.266665 |
| $\mathbf{4}$ | -0.309448 |

Example: 2D data

Recipe!

Higher dimensions

- First principal component (PC1): direction of largest variation of the data (same as before)
- PC2: direction of largest variation once first PC1 has been removed. PC2 is always orthogonal (at right angles) to PC1
- PC3: and so on... PC3 will be orthogonal to PC1 and PC2.

$$
(\text { total variance })=\left(s_{P C 1}\right)^{2}+\left(s_{P C 2}\right)^{2}+\ldots
$$

PCA in Python

	petalLength	petalWidth	sepalLength	sepalWidth
$\mathbf{0}$	1.4	0.2	5.1	3.5
$\mathbf{1}$	1.4	0.2	4.9	3.0
$\mathbf{2}$	1.3	0.2	4.7	3.2
$\mathbf{3}$	1.5	0.2	4.6	3.1
$\mathbf{4}$	1.4	0.2	5.0	3.6
$\mathbf{5}$	1.7	0.4	5.4	3.9
$\mathbf{6}$	1.4	0.3	4.6	3.4
$\mathbf{7}$	1.5	0.2	5.0	3.4


```# reduced data (PC recipe) pd.DataFrame(data=pca.transform(df), columns=['pc1','pc2'])```		pc1	pc2
		-2.684126	0.319397
		-2.714142	-0.177001
		-2.888991	-0.144949
		-2.745343	-0.318299
Principal Components (PC1 and PC2)		-2.728717	0.326755
		-2.280860	0.741330
petalLength petalWidth sepalLength sepalWidth		-2.820538	-0.089461
$\begin{array}{lllll}\text { pc1 } & 0.856671 & 0.358289 & 0.361387 & -0.084523\end{array}$		-2.626145	0.163385


	petalLength	petalWidth	sepalLength	sepalWidth
$\mathbf{0}$	1.403214	0.213532	5.083039	3.517414
$\mathbf{1}$	1.463562	0.240246	4.746262	3.157500
$\mathbf{2}$	1.308217	0.175180	4.704119	3.195682
$\mathbf{3}$	1.461330	0.239732	4.642212	3.056967
$\mathbf{4}$	1.363738	0.197000	5.071755	3.526555
$\mathbf{5}$	1.675528	0.326170	5.505810	3.791408
$\mathbf{6}$	1.357238	0.195518	4.765289	3.230411
$\mathbf{7}$	1.479932	0.246081	5.001556	3.398599

## Variance explained (scree plot)

```
dfvar = pd.DataFrame(data=pca.explained_variance_,index=['pc1','pc2'])
dfvar.plot.bar(grid=True,legend=False,rot=0).set_ylabel('explained variance')
```

dfvar = pd.DataFrame( data=pca.explained_variance_ratio_,index=['pc1','pc2'] ) dfvar.plot.bar(grid=True,legend=False, rot=0).set_ylabel('explained variance ratio')



## Variance explained

- PC1 and PC2 account for $97.8 \%$ of the variance explained!
- A very good 2D approximation to this 4D dataset.

```
pca.explained_variance_ratio_
array([0.92461872, 0.05306648])
pca.explained_variance_ratio_.sum()
0.97768520631879496
```



## PC plot

- Scatter plot of PC1 vs PC2 (with labels)
- Can also be drawn in 3D (including PC3)



## WARNING: Beware of the scale!



## WARNING: Beware of the scale!



- Perpendicular distances change if data is stretched. Results depend on scale!
- Often useful to "normalize" data to a common scale.



## Summary

- PCA finds the directions with the most variation in the data. These are called Principal Components (PC).
- Total variance in the data is the sum of contributions from each PC. Can use a scree plot to compare them.
- If the first couple PCs account for a significant proportion of the total variance, data is "essentially" low-dimensional.
- PCA rotates your frame of reference so the most "interesting" (highly variable) dimensions come first!
- The PCs can change depending on how your data is scaled.

