Shifra Isaacs Data Science Candidate

Case Study Presentation

November 14, 2022

SCHOLASTIC EDUCATION

Impact

Objective

 Used ML to identify schools where Marketing should spend resources to prevent subscription churn

Recommendation: Target Schools With...

- Less ability to pay for orders
- Poorly-funded book clubs and education groups
- Low enrollment and HHI
- High teacher turnover

Strategy

Exploratory Analysis

- Identify highest and lowest performing schools by subscription numbers
- Explore common features within these groups
 Attrition Modeling
- Predict which schools' subscription rates decreased by 50% or more from 2017 to 2019
- Identify buildings at risk of reducing subscriptions

Blockers

Data Questions

- Which arbitrary lines should we draw to define the schools we're looking for?
- How do we wrangle this data to address changes over time?
 Data Challenges
- Big data
- Last day (11/14), realized I made a crucial mistake and needed to redefine and test my model
- Missing values in **Buildings** table
- Many schools ordered thousands of magazines with an overall revenue contribution of **\$0** (Zero Orders)

SCHOLASTIC EDUCATION

Overcoming Blockers

Time-Efficient Solutions

- Considered Zero Orders to be special cases, i.e. donations or deals
- Left **Zero Orders** in YoY analysis but omitted them from the all-time analysis
- Filled missing values with column means, medians, and modes as needed
- Viewed Buildings columns as unchanging constants (i.e. enrollment, demographics, etc.)

Snapshot of Aggregated Zero Orders

Building ID	Total Quantity	Total Revenue
600031079	100	\$0
600031714	25	\$0
600031934	1395	\$0
600031940	1719	\$0
600032227	885	\$0

Qualitative + Quantitative Characterization

RURAL

51%

100 Highest Performers

100 Lowest Performers

Group Averages	High Performers	Low Performers
Enrollment	481	429
нні	\$46K	\$52K
T1 Eligible	66%	53%
6th-Grade Level	4.2%	4.7%
7th-Grade Level	2%	0%

**All table values are means

Low Building Performance

Low Subscription Rates

High Building Performance

Feature Engineering

New/Transformed Features

- Deltas (Δ): Teacher Count, Order Amount, Book Club Revenue, Education Group Revenue
- Flags: 7-8th Grade Reading Levels, Washington, Georgia, Indiana, Maryland, Rural, Suburban, Urban
- Target: Paid Quantity △ (2 classes)

Procedure

- Data Scaling: Made features easy to interpret later (Min Max Scaler)
- Automatic backward selection:

Modeling Strategy

Goal

- Predict Drastic Churn (DC): buildings whose subscription rates fell by 50% or more between 2017 and 2019
- Incorporate helpful features from all tables provided

Machine Learning Techniques

- 2 data classes: DC and Non-DC
- Binary classification modeling

Example: Binary Classification

Findings

Model Results

- Logistic regression predicts DC buildings with 87% accuracy
- Gaussian Naïve Bayes yields best overall metrics (App. A)

Selected Model Features

- Book Club Revenue Δ
- Revenue Ed Group Δ
- Teacher Count Δ
- % Students at 3rd-Grade Level
- % Students at 4th-Grade Level

2D Visual Representation of Logistic Regression

■scholastic EDUCATION

Feature Importance (Gaussian NB)

Feature

Recommendation

Target Schools

- Book/Education/Order Revenue Δ
 Schools with poorly-funded book
 clubs and education groups
- Teacher Count ∆ □ Schools with high teacher turnover
- Schools with low Enrollment
- Schools with low Household Income

Social Action

 Fundraisers and incentivized reading contests for target schools to

Next Steps

Further Analysis

- Tune models and try other powerful binary classifiers like XGBoost and Neural Networks
- A/B Test data-driven marketing efforts
- Evaluate data quality; Explore **References** to fill null values
- <u>GitHub Repository</u>
- Used knowledge and code from previous <u>portfolio</u> <u>project</u>

Impact Revisited

Conclusion

 Machine learning model identifies schools that will see drastic subscription churn

Business Value

- Marketing: Focus on retention of schools at risk of DC and prevention of subscription churn
- **Sales:** Use similar school spending patterns to inform pitches
- Overall: Increase operational efficiency by directing resources where they count most

Thank you!

Sincerely, Shifra Isaacs

SCHOLASTIC EDUCATION

Appendix A: Binary Classification Model Results

Model	Accuracy	Precision	Recall	F1 Score
Logistic Reg	87%	0%	0%	0%
SVC	87%	0%	0%	0%
Linear SVC	87%	0%	0%	0%
Gaussian NB	16%	98%	14%	23%
Random Forest	86%	2%	1%	36%
KNN	84%	2%	11%	4%

SCHOLASTIC EDUCATION

Appendix B: Correlation Matrix of Final Features

