
Flatcar @ TAG Security

Technical Overview



ELT layout

Motivation
     &
   Goal

Flatcar is a complex project

Provide technical overview

Introduction to concepts and processes

Gain understanding

Foundation for elaborate questions

Basis for determining next steps



ELT layout

Agenda Background, Concepts, and Operation
History, Basic Concepts, FS Layout & Mount Points

Using Flatcar: Configuration, Provisioning, Operation

Update Process

Test, Release, and Stabilisation

Developing Flatcar
Packages and Concepts

Reproducible Builds

Scope limits

Security Considerations Wrap-Up

Appendix // SLSA deep dive, Vendor support



ELT layout

Flatcar Container Linux is a fully open source, 
minimal-footprint, secure by default
and always up-to-date Linux distribution
for running containers at scale.

Flatcar Container Linux project Mission Statement

https://github.com/flatcar/Flatcar#mission-statement


Minimal attack surface (small footprint with very few run-time services)

Securely operate workloads, secure update process

Secure Build and Release

“Security First” Development Process

Secure by Default



Background, Concepts, and Operation



Heritage
Flatcar Container Linux started as a Friendly Fork of the epochal

CoreOS Container Linux, which in turn was derived from
Chromium OS, which is based on

Gentoo Linux.

Background, Concepts, and Operation

Flatcar’s core concepts are derived from this heritage.

We always build from sources
             like Gentoo does.

The OS is
       immutable and shipped as a full disk image
       uses A/B partitioning for updates (and rollbacks), distributed via a stateful protocol (Omaha)
             like Chromium OS.

Flatcar includes
       a minimal set of applications and tools tailored to only run containers
       it uses declarative configuration applied at provisioning time
             like CoreOS.

Our SDK makes development accessible, and is a key element for SLSA. Automation helps with Freshness and security.
             (This has been a major area of investment for us.)



Disk Layout and mount points
● Initial provisioning uses full disk images.
● Updates contain only kernel+initrd+USR
● Additional disks/storage customised / configured via Ignition.

Background, Concepts, and Operation

1 A/B OS partitions. Only one is active. P4 is empty when initially provisioned.
2 Used to be /usr/share/oem; move to /oem w/ Alpha next week.

3 Partition is expanded at provisioning time to entire remaining disk.

# label mountpoint size type

1 EFI SYSTEM /boot 128M EFI

2 BIOS_BOOT 2M BIOS boot

3 USR-A /usr1 1G ext2 (ro)

4 USR-B /usr1 1G ext2 (ro)

5 ROOT-C 0 <reserved>

6 OEM /oem2 128M BTRFS

7 OEM-CONFIG vendor
specific 64M vendor

specific

8 <reserved> 0 <reserved>

9 ROOT / what’s left3 ext4, BTRFS, 
XFS

1. + 2. EFI partition with kernel+initrd, BIOS boot partition for legacy boot
          /boot : EFI partition. (kernel+initrd)s for use with  USR-A / USR-B

3. + 4. Read-only OS partitions.
           /usr : OS binaries. Read-only, dm-verity protected partition.
           One is active, the other used to stage update.

6. + 7. OEM tooling for vendor support. Specific to each vendor image.
           /usr/share/oem: E.g. openvm-tools (vmware), ssm-agent (AWS)

9. Root: formatted + populated at first boot, expanded to the end of disk.
          / : user configuration / customisation, container images etc.

/etc : overlayfs backed by /usr/share/flatcar/etc (lowerdir)
           Allows for for user/vendor configuration management

/dev/shm, /run, /media: tmpfs; /dev: devtmpfs



Provisioning and Boot
Before provisioning / first boot: Configuration

- Butane (YAML) / Ignition (JSON). Declarative. Applied once (at provisioning time).
- Includes full host configuration (though basic settings are auto-detected).

- set up disks and filesystems; create directories and files (inline or download).
- Create and manage systemd units. Can also be used for per-boot configuration.
- Create users and groups, deploy SSH keys (authorized_keys).
- Configure kernel arguments

Boot process

1. Grub: Load kernel + initrd for “active” USR partition. One (kernel+initrd+USR) per installed OS version.
a. Alternatively, Grub one-time boots “new” configuration (first boot after update)

2. Kernel + initrd: mount root and /usr, mount /etc overlay.
a. At first boot, expand, format, and populate / , apply Ignition configuration.
b. /usr partition dm-verity is built into initrd.
c. Pivot root  /sysroot -> /

3. Systemd reloads; regular user space starts up

Background, Concepts, and Operation

https://coreos.github.io/butane/config-flatcar-v1_1/


Flatcar Node

Staying up to date
Flatcar inherits the Omaha protocol and A/B partition atomic updates / roll-backs from its Chromium OS roots.

Update payload is a signed binary containing an image of the /usr partition + kernel + initrd.

Updates are activated through reboot. Different schemes apply for single nodes, clusters with / without control plane.

Background, Concepts, and Operation

                                                   locksmith      update_engine                                                                          update server            update storage

Check

Grant w/ URL

inactive USR 
partition

Fetch, validate, write

Internet /
local network

Request

Grant
Reboot

Activate

Report Success

✅staged



etcd 
service Flatcar Node

Staying up to date
Flatcar inherits the Omaha protocol and A/B partition atomic updates / roll-backs from its Chromium OS roots.

Update payload is a signed binary containing an image of the /usr partition + kernel + initrd.

Updates are activated through reboot. Different schemes apply for single nodes, clusters with / without control plane.

Background, Concepts, and Operation

                                                   locksmith      update_engine                                                                          update server            update storage

Check

Grant w/ URL

inactive USR 
partition

Fetch, validate, write

Internet /
local network

Activate

etcd

Request

Grant
Reboot

Request

Grant
Lock

Report Success

✅staged



Flatcar 
Update 
Operator

Staying up to date
Flatcar inherits the Omaha protocol and A/B partition atomic updates / roll-backs from its Chromium OS roots.

Update payload is a signed binary containing an image of the /usr partition + kernel + initrd.

Updates are activated through reboot. Different schemes apply for single nodes, clusters with / without control plane.

Background, Concepts, and Operation

                                                        Flatcar      update_engine                                                                          update server            update storage
                                                   Update Agent Check

Grant w/ URL

inactive USR 
partition

Fetch, validate, write

Internet /
local network

Activate

FLUO

Request

Grant
Reboot

“Reboot 
Needed”

annotation

Report Success

drain

“Reboot OK”
annotation

Flatcar Node

✅staged



Background, Concepts, and Operation

Idle Check Update 
Granted Download

Verify Install Need 
Reboot Complete

Nebraska Update Server
FOSS update server

- part of the Flatcar Container Linux project
(generic Omaha implementation, not Flatcar specific)

- Stateful update protocol

- Insights into OS version spread, update uptake,
Client status break-down / errors

- Server supports rate limiting / staggered rollout,
custom instance groups, etc.



Nebraska Update Server

Serves Metadata,
    not actual payloads

Written in Go, TypeScript

Instance access is not authenticated

Web GUI authenticated via OAuth
    (Flatcar maintainers team)

Runs on AWS RDS w/ ELB
    for basic DOS protection

Background, Concepts, and Operation



Test, Release, and Stabilisation Process
Stabilisation through Channel promotion: Alpha, Beta, Stable [, LTS]

Alpha is for development, Beta for Canaries, Stable for Prod.
ALL releases must pass full release test suite.

Releases are built on private infrastructure hosted on Equinix Metal (deep dive see SLSA appendix)
- Access to infrastructure is restricted to a subset of the Flatcar Maintainers team
- Release images (for new provisionings) are signed on build infrastructure
- Update payloads are signed manually by a Flatcar Maintainer in an air-gapped environment

- Uses a separate signing key (HW token), access is restricted to 3 core maintainers

Background, Concepts, and Operation

main

Alpha v1 Alpha v2 Alpha v3 Alpha v3.0.1 Alpha v4 Alpha v5

Beta v1.1.0 Beta v1.1.1 Beta v1.1.2 Beta v3.1.0

Stable v3.2.0

Beta v5.1.0

Alpha v6

Beta v6.1.0 Beta v6.1.1

Stable v6.2.0



ELT layout

Developing Flatcar
Packages, concepts,
reproducible builds



Packages and Projects
In total, the project uses less than 500 software packages (Gentoo or self-maintained ebuilds1)

- 299 packages make up the Base OS Image
- 355 packages are used for the Flatcar developer container (most shared with the base OS).
- 412 packages are used in the SDK (most shared with the two above).

Most packages1 we use are from Gentoo upstream, but we also maintain some ourselves.
- We sync updates to most packages from Gentoo upstream, including security fixes
- We collaborate with upstream Gentoo on fixes, stabilisations, and package updates
- We maintain our own ebuilds1 for Flatcar features, and for packages where we deviate from Gentoo

- important OS components (kernel and systemd): track upstream releases directly independent from Gentoo
- also Flatcar specific tools like Ignition, Afterburn, or Locksmith
- These we update based on the respective upstream project’s releases, usually up to date

Nebraska
- No major new features planned at this time
- Low intensity maintenance mode (keeping libs & deps up to date)

Flatcar Linux Update Operator (FLUO)
- Kubernetes operator for cluster-wide update coordination; also no major new features planned
- CAPI expressed interest in extending it to also cover on-node Kubernetes

Developing Flatcar

1 Gentoo does not ship packages like traditional distros do. Instead, build instructions are shipped to build 
software directly from upstream sources. These instructions are called “ebuild files”.



Core Development Concepts
There are two components to Flatcar distro development; the SDK container and the “scripts” repository.
(“scripts” is a legacy name; “Flatcar Distro” would be a more descriptive name for the repository)
“scripts” contains all package definitions (ebuilds) as well as automation to build OS images and the SDK.
“scripts” also contains versioning information and helper scripts to work with the SDK.

Flatcar image builds are always from sources1. Build result is always an image. There are no packages. SLSA 
provenance for all OS image packages is recorded during build and included in the OS image.

The Flatcar SDK container offers a full-featured self-contained build environment. It is also used for all 
automated / CI builds. It is distro independent and can even run on WSL.

Versioning is based on GIT branches and tags in the “scripts” repository.

- Each active maintenance branch is … a branch.
- Each release is a tag
- The “main” branch may be considered “alpha-next”. New major versions are branched off from there.
- Branches are self-contained and include all information to run a build. No parameters necessary.

Version information is updated / recorded when creating branches and tags.
A check-out of a specific “scripts” OS version tag or branch will include the respective version information.

Developing Flatcar

1 We provide pre-built packages for all releases via our packages caches. These are meant to cut down rebuild 
time of e.g. downstream modifications of Flatcar.



Flatcar builds are reproducible1

git clone https://github.com/flatcar/scripts.git; cd scripts

git checkout alpha-3619.0.0

./run_sdk_container -t

$ ./build_packages

$ ./build_image

$ ./image_to_vm.sh –from __build__/images/images/amd64-usr/latest/ --format ami

will reproduce the AMI image of release alpha-3619.0.0 with the exact package versions, SDK version and 
configurations used to originally build that release.

Running our test suite with more than 100 scenario tests is equally straightforward as it is also shipped in a 
self-contained container. For each release, the version of the test suite used to run release tests is also recorded 
in the scripts repo. Re-running release tests on re-built releases will therefore the exact version used for testing 
that respective release.

1 Note that while compilation results are the same, binaries are not bit-by-bit identical because compilers insert 
transient information like build hosts at compile time.

Developing Flatcar

https://github.com/flatcar/scripts.git


Security Processes and CVEs
The Flatcar project takes a proactive approach to security. We maintain a Security Task force to track emerging 
and to tend to ongoing issues.

- The task force is formed from Maintainers, who can volunteer and are elected into the task force.
- The task force has access to embargoed security issues; access is restricted on a need-to-know basis.
- Our task force also includes an “on-call” Primary and Secondary - roles rotated on a weekly basis.

- Primary and secondary will actively process incoming security notifications.
- Once known, issues will be assessed against Flatcars existing mitigations and added to the tracker.
- They are expected to spend at least a few hours a week actively researching issues in upstream 

projects, Gentoo GLSAs, and other distros’ security trackers.
- The task force also reviews the state of ongoing issues in a fortnightly cadence, in a private video call.

In PRs that fix a security issue and / or update a package to a release that contains one or more CVE fixes, the 
CVEs fixed are noted. This is picked up by release notes generation later.

For each release, “CVEs fixed” is part of the release notes. There is a separate detailed report for each release 
elaborating on each of the CVEs fixed.

Flatcar is shipped as an image; even patch level releases that fix a single issue require a full from-scratch build 
and thorough testing of all supported vendor platforms. Our average round-trip time from “patch available” to 
“release published” is between 24h and 48h.

Security Considerations



Scope Limits

Separation of Concern



The Isolation Door swings both ways
Very few dependencies between host OS and container apps

- Kernel API, esp. features like eBPF, iptables/nftables, cgroups v1/v2; containerd / docker
- As containerisation isolates applications from the OS, it also isolates the OS from applications
- Flatcar is only concerned with the OS
- Favourite app? Use a container. Tool missing? Container.

Connections to Kubernetes

- Node updates
- Kubernetes Installation options
- ClusterAPI

Service configurations

- Core services: systemd
- Everything else: control plane, out of scope

Cluster Operation

- Custom etcd reboot orchestration via Locksmith
- Everything else is out of scope

Separation of Concern and Scope Limits



Wrap-up: Secure by Default



Secure by Default
Minimal attack surface, small footprint with very few run-time services

systemd[-resolved|-timesyncd|-udevd|-networkd|-userdbd|-logind], also for user sessions; dbus-daemon (system)
update_engine
containerd (and potentially docker)
sshd (if socket-activated)
locksmithd (if not on Kubernetes)

Secure workloads, secure update process
- Read-only, dm-verity protected OS partition
- Reproducible deployments w/ declarative configuration, no configuration drift
- User vs. shipped configuration tracking and management
- Updates are manually signed in air-gapped environment w/ HSM key

Secure Build and Release
- Sandboxed release builds on private servers, inputs are integrity checked
- SLSA-attested builds (deep dive in Appendix); signed SBOM 2.2 shipped with all OS releases
- Signed images and updates
- Access to release servers limited to few trusted maintainers, reviewed regularly

“Security First” Development Process
- Active CVE tracking by dedicated Security task force
- Security Primary / Secondary drive daily research / engagement

Security Considerations wrap-up

https://www.flatcar.org/docs/latest/setup/releases/update-strategies/#management-of-config-files


The Community’s
Container Linux

Thank You



Appendix



SLSA Deep Dive



Supply Chain Security

Security Considerations

SLSA defines a number of key threats 
against supply chains:

1. unauthorised changes to sources
2. compromised source repositories
3. builds from a modified source
4. a compromised build process
5. use of a compromised dependency
6. publishing of a compromised 

package or image
7. a compromised package or image 

repository
8. injection / use of a compromised 

package or image



Supply Chain Security

Security Considerations

SLSA defines a number of key threats 
against supply chains:

1. unauthorised changes to sources
2. compromised source repositories
3. builds from a modified source
4. a compromised build process
5. use of a compromised dependency
6. publishing of a compromised 

package or image
7. a compromised package or image 

repository
8. injection / use of a compromised 

package or image

Flatcar concerns



Supply Chain Security - Build time

Security Considerations

Inputs
1. Flatcar’s build automation and package definition 

repository. Write access is limited to trusted group of 
core Flatcar maintainers. All changes are peer reviewed.

2. Upstream source tarballs of applications and libraries; 
Integrity is secured by cryptographic checksums.

3. The SDK container. Result of a previous build, validated 
by its container registry checksum.

Process
1. OS image and optionally SDK are built from validated 

sources on a dedicated bare metal machine in a secure, 
access-controlled Equinix Metal data center. Access to 
the infrastructure is limited to a small number of core 
maintainers and secured via a VPN. 

2. Integrity of source tarballs is validated against multiple 
cryptographic checksums stored in input 1.

3. Per-package SLSA provenance is generated during build.
4. SLSA provenance is included in the signed OS image.
5. Additionally, a verity hash of the OS partition is 

generated and injected into the initrd for tamper 
protection at run time.

6. The update package is additionally signed manually by a 
trusted maintainer in an air-gapped environment. Only 
a small sub-set of core maintainers are authorized to 
perform this step.

Outputs
1. Signed OS images for all supported vendors.
2. A signed OS update package.
3. Optionally, a checksum-verified SDK container.



Supply Chain Security - Provisioning and Runtime

Security Considerations

Provisioning time
1. Images are signed with Flatcar’s image signing key. 

Public key is available from our website.
2. Image integrity can thus be validated by provisioning 

logic before provisioning.
In-Place Upgrade

1. OS partition, Kernel, and initrd are combined in a single 
update package which was signed manually by a trusted 
maintainer in an air-gapped environment with a key 
stored on a HSM device.

2. Upgrade is downloaded by the Flatcar update client, 
verified against a compiled-in key in the client. The 
client resides on the read-only dm-verity protected OS 
partition.

3. New version is staged only after successful verification 
and activated via reboot.

Runtime
1. Kernel + Initrd (combined in a single binary blob) has 

baked-in verity hash for OS partition.
2. Initrd validates and mounts OS partition and pivots to 

the boot disk root.
3. Regular start-up commences. All OS services started 

reside on the read-only verity-protected OS partition.



Supply Chain Security - Conformance

Security Considerations

Notes
1. Build integrity - Hermetic builds: While Flatcar includes the potential for hermetic 

builds today - all sources are known in advance and can be staged to a build 
machine isolated from the network - the current build infrastructure and 
automation does not implement this feature. A tracking issue exists to address 
this in the future.

2. Build integrity - Reproducible: Many software packages such as compilers and 
core libraries insert build-variable information such as timestamps, user IDs, and 
host names into their binaries during the build process. While Flatcar’s builds are 
100% reproducible, the output may differ in a bit-by-bit comparison ONLY in 
places where this volatile information is compiled into the binaries.

3. Common - Security: This SLSA requirement is marked TBD in the SLSA standard 
and is not well defined at the time of writing; the essence appears to gravitate 
around a verifiable tamper-proof build infrastructure, e.g. via a full chain of trust. 
Flatcar is built on Flatcar to benefit from all the security features the distribution 
already ships with (discussed in detail below) - immutable OS binaries, boot time 
integrity check, etc. However, Flatcar currently does not support setting up a full 
chain of trust via TPM. A roadmap item aims to add TPM support to Flatcar, and 
have the build infrastructure support a full chain of trust.

4. Common - Superusers: The number of users with direct access to build 
infrastructure is very small, and users are well trusted. However, changes to the 
build system do not enforce approval by a second administrator.

https://github.com/flatcar/Flatcar/issues/833
https://github.com/flatcar/Flatcar/issues/630


Vendor Support



Vendor Support
Flatcar supports

- EC2, Azure, GCE, Equinix Metal, and Digital Ocean clouds out of the box
- Also available via AWS, GCP, and Azure Marketplaces

- VMWare, OpenStack, QEMU, LibVirt private clouds out of the box
- Community support further includes VirtualBox, Vagrant, Exoscale, Rackspace Cloud, Vultr, and Eucaliptos
- Hetzner is supported via Terraform (no Metadata support)

Vendor images

- Are derived from the a release’s base OS build (i.e. no rebuild per vendor)
- Include vendor metadata support (bootstrap config) and vendor guest tools.

- e.g. wa-agent for Azure image, open-vm-tools for VMWare, etc.
- Vendor tools are installed in a separate “OEM partition”, base OS remains unchanged
- Vendor image generation (both fully supported and community) integrated in build process

Adding Vendor Support

- Vendor support is constantly extended; e.g. currently working on OVH
- Metadata, guest tools (where applicable); integration in Vendor clouds / marketplaces

Appendix


