Reconhecimento de Padrões (RPD-0041)�
Prof. André E. Lazzaretti
Lecture 10 - Deep Feedforward Neural Networks and Backpropagation
Introduction
Introduction
Introduction
Introduction
Introduction
Basic Structure
Learning XOR
Learning XOR
Learning XOR
1
1
1.1 + 1.1 + 1.(-1.5) = 0.5
1.1 + 1.1 + 1.(-0.5) = 1
1
1
1.(-2) + 1.1 + 1.(-0.5) = -1.5
0
Learning XOR
How to train?
Loss Functions: Classification
Multiclass (cross-entropy):
Binary (logistic):
For regression: https://keras.io/api/losses/regression_losses/
Architecture
Hidden Units
Hidden Units
Output Units
Binary!
Multiclass!
Regression!
Effect of depth
L2 Parameter Regularization
Smooth
Abrupt
Small weights
Large weights
Early Stopping
Dropout
Dropout
How to train? Gradient-Based Learning
Backpropagation
Backpropagation
σ(x4w4)
σ(x1w1)
σ(x5w5)
σ(x6w6)
σ(x2w2)
σ(x3w3)
ℇ
Backpropagation
∂ℇ/∂w4
∂ℇ/∂w1
∂ℇ/∂w5
∂ℇ/∂w6
∂ℇ/∂w2
∂ℇ/∂w3
ℇ
σ(x4w4)
σ(x1w1)
σ(x5w5)
σ(x6w6)
σ(x2w2)
σ(x3w3)
ℇ
Backpropagation
∂ℇ/∂w4
∂ℇ/∂w1
∂ℇ/∂w5
∂ℇ/∂w6
∂ℇ/∂w2
∂ℇ/∂w3
ℇ
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation
Backpropagation