1 of 39

Number Field Sieve

Cryptography Seminar Fall 2018

2 of 39

2

An insightful and beautifully written exposition on the methods and history of using sieves to factor.

3 of 39

Number Field Sieve History

  •  

3

4 of 39

Number Field Sieve: Set Up

4

 

 

 

 

 

5 of 39

Number Field Sieve

  •  

5

 

6 of 39

The Set S

  •  

6

(Property 1)

(Property 2)

7 of 39

The Set S

Why do we want S?

7

 

 

8 of 39

The Set S: Property 1

  •  

8

 

 

What about Property 2?

9 of 39

Property 2

9

 

Ideally, we want:

 

This gives unique factorization into primes. This usually won’t be true.

10 of 39

Property 2

10

 

Ideally, we want:

 

Get unique factorization of ideals into prime ideals.

11 of 39

Property 2

11

 

Ideally, we want:

 

 

 

12 of 39

Property 2

12

 

Ideally, we want:

 

Then we can repeat a similar sieving argument.

13 of 39

  •  

13

14 of 39

How do we do anything?

  •  

14

 

 

15 of 39

Number Field Sieve: First Steps

  •  

15

 

 

16 of 39

Factoring Primitive Polynomials

  •  

16

polynomial time:

17 of 39

Factoring Primitive Polynomials

  •  

17

 

18 of 39

Factoring Primitive Polynomials

  •  

18

19 of 39

The Norm Map

  •  

19

 

20 of 39

Sieving Norms

  •  

20

21 of 39

CounterExample

21

 

22 of 39

Primes Above p

  •  

22

 

23 of 39

Elongating the Exponent Vector

Define

23

 

 

24 of 39

Elongating the Exponent Vector

  •  

24

 

But we’re getting a bit closer.

25 of 39

Obstructions

25

 

Algebraic Object

 

 

 

 

 

26 of 39

The Obstruction Group

Let

26

 

27 of 39

  •  

27

28 of 39

  •  

28

29 of 39

 

  •  

29

30 of 39

A Minor Problem

30

 

 

 

31 of 39

A Major Problem

31

 

 

32 of 39

The Square Root Problem

  • Solving the square root problem is faster than sieving and linear algebra with exponent vectors.
  • In practice, this won’t be an issue.

32

33 of 39

Run Time

  •  

33

34 of 39

Comparison of Methods

34

Method

Run Time

Trial Division

Quadratic Sieve

Number Field Sieve

35 of 39

Comparison of Methods

35

 

 

36 of 39

36

 

 

37 of 39

37

 

 

38 of 39

Concluding Remarks

In practice, number field sieve is faster for digits > 130.

38

Record: Largest number factored by number field sieve is RSA-768 (232 digits)

RSA-768 = 12301866845301177551304949583849627207728535695953347921973224521517264005 07263657518745202199786469389956474942774063845925192557326303453731548268 50791702612214291346167042921431160222124047927473779408066535141959745985 6902143413 =

33478071698956898786044169848212690817704794983713768568912431388982883793 878002287614711652531743087737814467999489 × 36746043666799590428244633799627952632279158164343087642676032283815739666 511279233373417143396810270092798736308917

39 of 39

39

Thank you.