Improving Network Intrusion Detection System using Imbalance Reduction Techniques
Created By
Mounil Shah (181070058)
Shivani Pawar (181071046)
Mona Gandhi (181071021)
Ketaki Urankar (181071069)
From Final Year BTech
Computer Engineering department
Under the guidance of
Prof. Vaibhav D. Dhore
Agenda
Overview
Introduction
Confidentiality Integrity Availability
How can we improve NIDS?
Motivation
NSL-KDD | CSE-CIC-IDS-2017 | CSE-CIC-IDS-2018
Problem Statement
Project Idea
Objectives
Main:
Additionally:
Timeline of Project Execution
Literature
Literature Survey
CSE CIC IDS 2018 Dataset
CSE CIC IDS 2018 Dataset
CSE CIC IDS 2018 Dataset
CSE CIC IDS 2018 Dataset
[1] Richard Zuech, John Hancock, and Taghi M. Khoshgoftaar. “Detecting web attacks using random undersampling and ensemble learners”. In:Journal of Big Data8 (1 Dec. 2021)
[2] Xu Kui Li et al. “Building Auto-Encoder Intrusion Detection System based on random forest feature selection”. In:Computers and Security95 (Aug. 2020)
[3] Sugandh Seth, Gurvinder Singh, and Kuljit Kaur Chahal. “A novel time efficient learning-based approach for smart intrusion detection system”. In:Journal of Big Data8 (1 Dec. 2021).
NSL KDD Dataset
Category | Number of original records |
Normal | 13,449 |
Probe | 2289 |
DoS | 9234 |
U2R | 11 |
R2L | 209 |
Total | 25,192 |
NSL KDD Dataset
NSL KDD Dataset
[4] Kull ̄ıy ̄at al-Taqn ̄ıyah al-Uly ̄a (United Arab Emirates), Institute of Electrical, and Electronics Engineers.“ITT 2018, Information Technology Trends : 28 29 November 2018,
[5] L Dhanabal and S P Shantharajah. “A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms”.
[6] Mohammad Reza Parsaei, Samaneh Miri Rostami, and Reza Javidan. “A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset”. In:IJACSA) International Journal of Advanced Computer Science and Applications7 (6 2016)
Imbalance Reduction Methods
[7] Sireesha Rodda and Uma Shankar Rao Erothi. “Class imbalance problem in the Network Intrusion Detection Systems”. In:International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016 (Nov. 2016)
[8] David A. Cieslak, Nitesh V. Chawla, and Aaron Striegel. “Combating imbalance in network intrusion datasets”. In: 2006 IEEE International Conference on Granular Computing (2006)
[9] Lan Liu et al. “Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning”. In: IEEE Access 9 (2021), pp. 7550–7563.issn : 21693536.
Literature Gap
Our Approach
Methodologies
Methodologies
Data Pre-Processing
Over Sampling Methods
Over Sampling Methods
Undersampling Methods
Undersampling Methods
DSSTE Algorithm
Step 1�Dividing the dataset into easy and difficult set
Step 2�Undersampling Majority class in difficult set
Step 3�Oversampling Minority class samples in the difficult set
Finally,�Concatenating all the resultant sets of data
Difficult Set Sampling Technique (DSSTE)
Framework of DSSTE [8]
Ensemble of Techniques
Steps followed while forming the ensemble of IRTs:
Ensemble implemented
Ensemble of Oversampling Techniques:
Ensemble of Undersampling Techniques:
Models used
Evaluation Metrics
Results
Dataset obtained after Imbalance Reduction
Attack Type | Preprocessed dataset | Oversampling (Ensemble Selected) | Undersampling (ENN) |
Benign | 1042603 | 834091 | 770172 |
Bot | 286191 | 832110 | 228920 |
BruteForce-Web | 611 | 780376 | 266 |
BruteForce-XSS | 230 | 832466 | 99 |
DDOS-Hoic | 686012 | 834039 | 548923 |
DDOS-LOIC-UDP | 1730 | 834091 | 1350 |
DOS-GoldenEye | 41508 | 833949 | 33038 |
DOS-Hulk | 461912 | 833784 | 360094 |
DOS-SlowHTTP | 139890 | 358851 | 42296 |
DOS-SlowLoris | 10990 | 777626 | 8674 |
FTP-BruteForce | 193354 | 416442 | 90419 |
Infiltration | 160639 | 832663 | 73141 |
SQL-Injection | 87 | 799243 | 67 |
SSH-BruteForce | 187589 | 660565 | 149452 |
Dataset obtained after Imbalance Reduction
NSL-KDD DATASET
Random Forest: NSL-KDD
Decision Tree: NSL-KDD
XGBoost: NSL-KDD
Conclusion for NSL-KDD
CSE-CIC-IDS 2018 DATASET
Random Forest: CSE-CIC-IDS-2018
Decision Tree: CSE-CIC-IDS-2018
XGBoost: CSE-CIC-IDS-2018
Conclusion for CSE-CIC-IDS 2018 dataset
Conclusion
And
Future Scope
Conclusion
Future Scope
Thank You
Q&A