1
Webinar Series in Applied Quantitative Analysis - Updated
Date | Topic |
�February 29�March 7 | Session One�Potential Outcomes and Omitted Variable Bias I (Theory) �Potential Outcomes and Omitted Variable Bias II (Application) |
�March 21�March 28 | Session Two�Difference-in-differences I (Theory)�Difference-in-differences II (Application) |
�April 25�May 2 | Session Three�Power analysis, clustering and sample size calculations I (Theory)�Power analysis, clustering and sample size calculations II (Application) |
May 23�May 30 | Session Four�Propensity score matching (Theory)�Propensity score matching (Application) |
�June 20�June 27 | Session Five�Fixed-effects I (Theory)�Fixed-effects II (Application) |
�July 25�August 1 | Session Six�Instrumental variables I (Theory)�Instrumental Variables II (Application) |
August 22 August 29 | Session Seven�Lagged dependent variables and the Arellano-Bond Estimator I (Theory)�Lagged dependent variables and the Arellano-Bond Estimator II (Application) |
������ �Écoute de l'interprétation d'une langue �Windows | macOS�
2
�1. Dans les contrôles de votre réunion/webinaire, cliquez sur Interprétation .
2. Cliquez sur la langue que vous souhaitez entendre. (Nous aurons le français) Pas besoin de choisir l'anglais, c'est la langue de la salle Zoom principale
3. (Facultatif) Pour entendre uniquement la langue interprétée, cliquez sur Couper le son original.
Remarques:
.
Listening to language interpretation� Windows | macOS
3
3. (Optional) To hear the interpreted language only, click Mute Original Audio.
Notes:
channel if you unmute your audio and speak.
Fixed Effects Theory
Professor Jeremy Moulton
Department of Public Policy
University of North Carolina at Chapel Hill
June 20, 2024
4
Panel Data
5
id | time | | |
1 | 1 | 2 | 0 |
1 | 2 | 2 | 0 |
1 | 3 | 5 | 1 |
2 | 1 | 2 | 0 |
2 | 2 | 4 | 1 |
2 | 3 | 4 | 1 |
3 | 1 | 5 | 1 |
3 | 2 | 5 | 1 |
3 | 3 | 5 | 1 |
6
Y
X
Pooled OLS (simple OLS regression)
7
Y
X
Between Estimator
8
Y
X
Y
X
Within Estimator (Fixed Effects)
9
Y
X
The Set Up
10
First Difference (T = 2)
11
What are you doing?
12
13
First Differences Model
First Difference (T > 2)
14
The First Difference Data
15
id | time | | | | |
1 | 1 | 2 | 0 | | |
1 | 2 | 2 | 0 | 0 | 0 |
1 | 3 | 5 | 1 | 3 | 1 |
2 | 1 | 2 | 0 | | |
2 | 2 | 4 | 1 | 2 | 1 |
2 | 3 | 4 | 1 | 0 | 0 |
3 | 1 | 5 | 1 | | |
3 | 2 | 5 | 1 | 0 | 0 |
3 | 3 | 5 | 1 | 0 | 0 |
Fixed Effects Model
16
Between Effects Model
17
Fixed Effect: De-Meaned version
18
Let’s go back to an earlier class
19
20
Positive slope
21
I
II
IV
III
Xi
Yi
Negative slope
22
I
II
IV
III
Xi
Yi
OK, now go back to the future
23
Do that again, but with Fixed Effects
24
I
II
IV
III
Xi
Yi
Fixed Effects: De-Meaned version
25
id | time | | | | |
1 | 1 | 2 | 0 | 3 | 0.33 |
1 | 2 | 2 | 0 | 3 | 0.33 |
1 | 3 | 5 | 1 | 3 | 0.33 |
2 | 1 | 2 | 0 | 3.33 | 0.67 |
2 | 2 | 4 | 1 | 3.33 | 0.67 |
2 | 3 | 4 | 1 | 3.33 | 0.67 |
3 | 1 | 5 | 1 | 5 | 1 |
3 | 2 | 5 | 1 | 5 | 1 |
3 | 3 | 5 | 1 | 5 | 1 |
Fixed Effects: De-Meaned version
26
id | time | | | | | | |
1 | 1 | 2 | 0 | 3 | 0.33 | -1 | -.33 |
1 | 2 | 2 | 0 | 3 | 0.33 | -1 | -.33 |
1 | 3 | 5 | 1 | 3 | 0.33 | 2 | .67 |
2 | 1 | 2 | 0 | 3.33 | 0.67 | -1.33 | -.67 |
2 | 2 | 4 | 1 | 3.33 | 0.67 | .67 | .33 |
2 | 3 | 4 | 1 | 3.33 | 0.67 | .67 | .33 |
3 | 1 | 5 | 1 | 5 | 1 | 0 | 0 |
3 | 2 | 5 | 1 | 5 | 1 | 0 | 0 |
3 | 3 | 5 | 1 | 5 | 1 | 0 | 0 |
Ok, but how do I actually do it?
27
But, what about time-varying unobservables?
28
Time Varying Unobservables
29
Time Varying Unobservables
30
Fixed Effects or First Differences will not “fix” all of our problems
Time invariant independent variables
31
Fixed Effects vs. Pooled OLS
32
Fixed Effects
Pooled OLS
How do I know if OLS or FE is better?
33
Test difference in coefficients
34