Sonos Seminar Series • 1 September 2022

Style transfer of audio effects with differentiable signal processing

Christian J. Steinmetz^{1,2} c.j.steinmetz@qmul.ac.uk

Nick J. Bryan²

Joshua D. Reiss¹

¹ Queen Mary University of London 2Adobe Research

arxiv.org/abs/2207.08759

More people are creating **audio** content

Producing **high quality audio** requires expertise

Style transfer of audio effects

Example 1: Speech post-production

Example 2: Music post-production

Audio production as a three stage process

- **1. Listen** Perform an acoustic analysis of the input recording
- **2. Plan** Establish an acoustic goal (style) considering the context
- **3. Execute** Manipulate DSP controls to achieve this goal

Learning audio production by example

Self-Supervised Data Generation

Differentiable signal processing

- Leveraging existing DSP tools and knowledge
- High quality audio processing with few artifacts
- Human understandable outputs that can be adjusted
- Efficient and can easily run in real-time on CPU

1 Automatic differentiation

 $A = 10$ ** (gain dB / 40.0) $w0 = 2 * math.pi * (cutoff_freq / sample_rate)$ alpha = torch.sin(w0) / $(2 * q_f (2))$ $cos w0 = torch, cos(w0)$ sart $A = \text{torch}.\text{sqrt}(A)$ if filter_type == "high_shelf":

 $b0 = A * ((A + 1) + (A - 1) * cos_w 0 + 2 * sqrt_A * alpha)$ $b1 = -2 * A * ((A - 1) + (A + 1) * cos_w 0)$ $b2 = A * ((A + 1) + (A - 1) * cos_w 0 - 2 * sqrt_A * alpha)$ $a0 = (A + 1) - (A - 1) * cos_w 0 + 2 * sqrt_A * alpha$ $a1 = 2 * ((A - 1) - (A + 1) * cos w0)$ $a2 = (A + 1) - (A - 1) * cos_w 0 - 2 * sqrt_A * alpha$

Explicitly define signal processing operations in autodiff framework

Engel, Jesse, et al. "DDSP: Differentiable digital signal processing." *ICLR* (2021).

2 Neural proxy

3 Neural proxy hybrid

4 Gradient approximation

Martínez Ramírez, Marco A., et al. "Differentiable signal processing with black-box audio effects." ICASSP, 2021.

Differentiable signal processing

- 1. Automatic differentiation
- 2. Neural proxy
- 3. Neural proxy hybrid
- 4. Gradient approximation

No existing comparison of these approaches in a unified setup.

Automatic differentiation audio effects

Training details

Models

RB-DSP Rule-based DSP **cTCN** Conditional TCN

Audio domain loss Multi-resolution STFT

Training Datasets Speech (LibriTTS) Music (MTG-Jamendo)

Effects 6-band parametric EQ Dynamic range compressor

Experiments

- 1. **Synthetic production style transfer** (matching input and reference)
- 2. **Realistic production style transfer** (non-matching input and reference)
- 3. **Audio production representations** (audio production style classification)
- 4. **Computational complexity**

Audio production style transfer

Evaluation metrics

Spectral balance (EQ)

(high-level features)

MSD Large window log-mel spectrogram error **SCE** Spectral centroid error

Dynamics (Compression)

(high-level features)

RMS Root mean square energy error **LUFS** Perceptual loudness error

Synthetic audio production style transfer

Table 1. Synthetic production style transfer with models trained using LibriTTS. Held-out speakers from the LibriTTS dataset are used, while utterances from DAPS and VCTK come from datasets never seen during training. Lower is better for all metrics except PESO.

Production style generation

For evaluating realistic style transfer

Realistic audio production style transfer

Table 3. Realistic production style transfer average performance of all pairwise configurations from five predefined styles with speech from DAPS using the model trained on LibriTSS and music from MUSDB18 using the model trained on MTG-Jamendo.

Learning audio production representations

Table 4. Class-wise F1 scores for five-class style prediction with linear classifiers trained on top of audio representations for speech and music using a single linear layer.

Computational complexity

Table 5. Runtime comparison across differentiation methods including seconds taken for a single training step, and real-time factor for inference on CPU (Intel Xeon CPU E5-2623 v3 @ 3.00GHz) and GPU (GeForce GTX 1080 Ti).

Differentiation approaches performance

- 1. **Rule-based DSP baseline** outperformed by learned approaches
- 2. **Neural proxy hybrid** approaches do not perform well
- 3. **Gradient approximation** performs second best but struggles with instability
- 4. **Automatic differentiation** performs best overall but is only an approximation of effects

Contributions

- **1.** The first audio effects style transfer method to integrate audio effects as differentiable operators, optimized end-to-end with an audio-domain loss
- **2.** Self-supervised training that enables automatic audio production without labeled or paired training data
- **3.** A benchmark of five differentiation strategies for audio effects, including compute cost, engineering difficulty, and performance
- **4.** The development of novel neural proxy hybrid methods, and a differentiable dynamic range compressor.

github.com/adobe-research/DeepAFx-ST huggingface.co/spaces/nateraw/deepafx-st

- **1.** Extend this approach with more differentiable effects (e.g. reverb, distortion, etc)
- **2.** Improved methods for training neural proxy (hybrids)
- **3.** Methods for handling dynamic construction of the processing chain
- **4.** Adapt this approach for multichannel use cases (e.g. multitrack mixing)
- **5.** Zero-shot adaptation to a new set of audio effects (can I use the plugins in my DAW?)

Sonos Seminar Series • 1 September 2022

Style transfer of audio effects with differentiable signal processing

Christian J. Steinmetz^{1,2} c.j.steinmetz@qmul.ac.uk

Nick J. Bryan²

Joshua D. Reiss¹

¹ Queen Mary University of London 2Adobe Research

arxiv.org/abs/2207.08759

