
Fluids in Space

FLUID MECHANICS 101

Fluid: A substance that flows and conforms to the shape of it's container

Liquid: An incompressible fluid with higher density

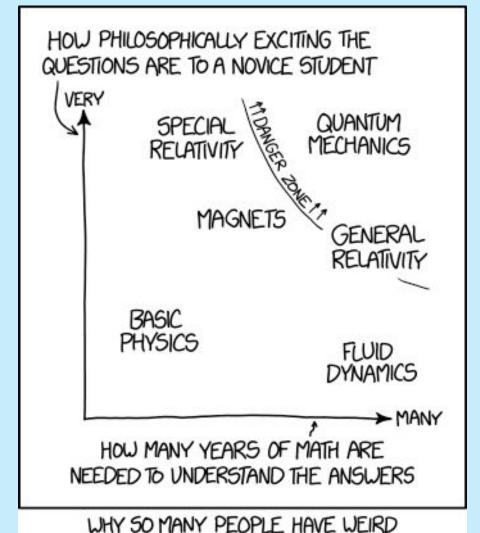
Gas: A compressible fluid with relatively low density

Fluid Properties

- Density: How heavy the fluid is
- Viscosity: How easy the fluid flows
- Surface Tension: Attraction between fluid molecules

FLUIDS AND FORCES

Fluids flow by definition, meaning that many forces cause them to move. Therefore, equation of motion is complicated:


$$\overbrace{\rho\Big(\underbrace{\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}}_{\text{Unsteady acceleration}}\Big)}^{\text{Divergence of stress}} = \underbrace{\underbrace{-\nabla p}_{\substack{\text{Pressure gradient}}}^{\text{Divergence of stress}} + \underbrace{\mathbf{f}}_{\substack{\text{Other body forces}}}^{\text{Other pressure gradient}} + \underbrace{\mathbf{f}}_{\substack{\text{Viscosity forces}}}^{\text{Other pressure gradient}} + \underbrace{\mathbf{f}}_{\substack{\text{Other process}}}^{\text{Other process}} + \underbrace{\mathbf{f}}_{\substack{\text{Other process}}}^{\text{Other p$$

Dimensionless Numbers: In fluid mechanics, so-called dimensionless numbers are used to understand which of these terms are important, and which can be

neglected:
$$Fr = \frac{\Delta \rho g l^2}{\sqrt{g l}} \qquad Bo = \frac{\Delta \rho g l^2}{\sigma} \qquad Ar = \frac{\rho \Delta \rho g l^2}{\mu^2}$$

FLUIDS AND YOU

IDEAS ABOUT QUANTUM MECHANICS

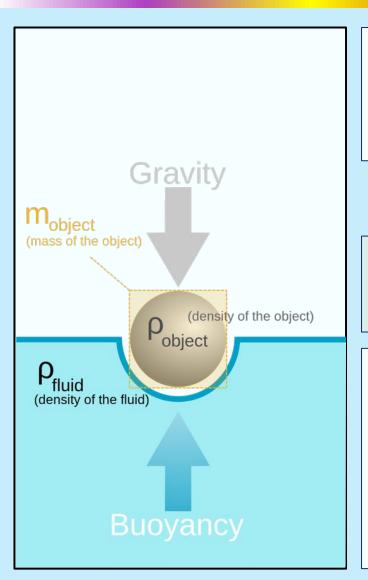
Rain falls due to gravity, and drops are spherical due to surface tension

Water slides work because water flows downhill due to gravity

FLUIDS AND GRAVITY

Removing gravity forces causes strange behavior in fluids!

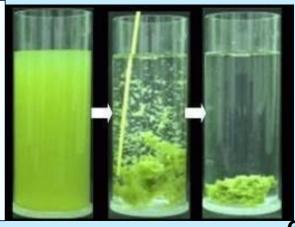
Effervescent tablets added to a floating drop of water on the ISS:


https://youtu.be/qv5WCYeVxW4

Drop of water with a bubble inside on a speaker on the ISS

<u>https://youtu.be/FTU2K5JVxUU?list=PL0MxE1LzKNjCdPDv0-</u> <u>04R6NjNWLqUFwJx</u>

BUOYANCY


Buoyancy: Objects denser (heavier) than a fluid sink, less dense (lighter) objects rise

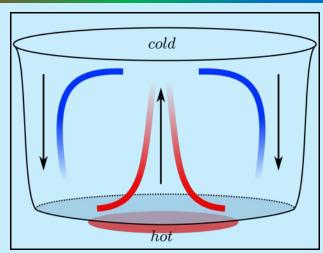
What happens without

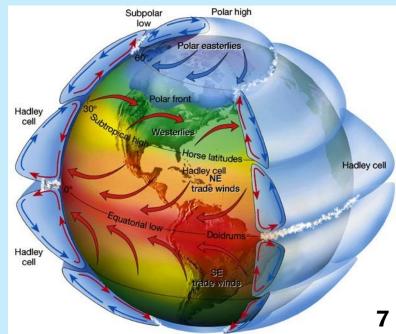
<u>oravity?</u>

Air bubbles don't rise, and solid objects don't fall!

Studying buoyancy is important for research on colloidal mixtures, like lotion, paint, and more

CONVECTION

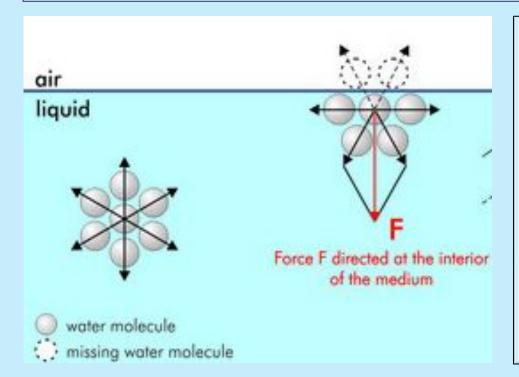

Convection: Buoyant flows driven by temperature (or chemistry) gradients


Known colloquially as "hot air rises"

What happens without

Buoyant convection is eliminated, meaning that heat transfer is very different!

But... a different type of convection caused by surface tension takes over


SURFACE TENSION

Surface Tension: Attraction of liquid molecules to each other

Marangoni Flows: Flow that occurs due to surface tension gradient

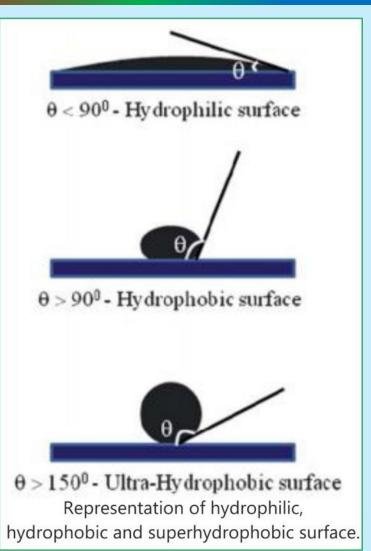
Quick Quiz: The size of a raindrop is found by the balance of surface tension and gravity:

$$Bo = \frac{\Delta \rho g l^2}{\sigma} = 1$$

 $g = 9.81 \text{ m/s}^2$, $\sigma = 0.07 \text{ kg/s}^2$, and $\Delta \rho = 998 \text{ kg/m}^3$.

What is the size of a drop, *l*?

SUPERHYDROPHOBIC SURFACES


Hydrophobic: "Water-fearing", aka, a property of an object that repels water

Hydrophilic: "Water-loving", a property of attracting water

Superhydrophobic: Extreme hydrophobicity

Video: Hydrophobic paddles on the space station

https://youtu.be/TLbh rMCM4 0

REFERENCES AND RESOURCES

- Textbook: Physics of Fluids in Microgravity, by R. Monti. Earth Space Institute Book Series, 2001
- Document: NASA Researcher's guide to fluid physics on the space station. Access the pdf from: https://www.nasa.gov/connect/ebooks/researchers guide fluid physics s detail.html
- Additional fluids videos from Astronaut Don Petit:

https://youtu.be/fWS0zWQ8DP4?list=PL0MxE1LzKNjCdPDv0-04R6NjNWLqUFwJx,

https://youtu.be/qHrBhgwq Q?list=PL0MxE1LzKNjCdPDv0-04R6NjN WLqUFwJx,

https://youtu.be/CrTUpTDyGpI?list=PL0MxE1LzKNjCdPDv0-04R6NjNWLqUFwJx