The Flow of PMOS’s Mobility�(Part2)�
Student:光心君
Date:2010/04/15
推導Poisson equation為矩陣表示
V1
V2
V3
推廣
推廣
A
V
Rho
Poisson equation的Boundary Condition
A = zeros(N,N); % Matrix for 2nd differential operator
A(1,1)=1/dx0^2; %boundary condition Vsurface=Vs
A(N,N)=1/dx(N-1)^2;
Initial Condition 🡪 V(1)=Vs , V(N)=0
1.V(1)=Vs 2.V(N)=0
推導Poisson equation為矩陣表示
J=2
J=N-1
%****************CALCULATED PARAMETERS****************
A(N,N)=1/dx(N-1)^2;
%**************POISSON EQUATION SETUP*****************************
Rho(N)=0; %bondary condition V(N)=0
推導Poisson equation為矩陣表示
%**************************scale set up *****************************
dx0=(xend-xstart)/real(N);
dx= dx0/au; % Mesh separation in a.u.
au = 0.5262E-8; % atomic unit in cm(波耳氫原子半徑)
dd=1/2/(dx^2); % (a.u.)^-2
推導Schrödinger equation為矩陣表示
From subprogram: shhole01R.m
%**************potential set up*****************************
V=zeros(N,1);
% Potential in Hr (Hr = 27.212; % 1 Hartree in eV)
for j=2:(N-1)
V(j) = interp1(xscaleI,VI,xscale(j))/Hr;
end
V(1)=20; %boundary condition
V(N)=20; %boundary condition
推導Schrödinger equation為矩陣表示
推導Schrödinger equation為矩陣表示
pf
推廣
xstart
xend
V=∞
Ψ0=0
V=∞
ΨN+1=0
推導Schrödinger equation為矩陣表示
推廣
%******** Schrodinger Equation ***************
H = zeros(N,N);% light hole
for j=2:(N-1)
H(j,j) = V(j)+2*dd/m1;🡪
end
H(N,N)=V(N)+2*dd/m1;
H(1,1)=V(1)+2*dd/m1;
for j=2:N
H(j-1,j) = -dd/m1;
H(j,j-1) = -dd/m1; 🡪
end
[lambda1,key1] =sort(diag(D));
%sort:以行為單位,將每一行的向量由小到大排列
Y1 = Y(:,key1); 🡪取key1行的一整列的元素
E1=lambda1*Hr+Ev1;
推導Schrödinger equation為矩陣表示
計算hole density
%**************** Calculating hole densities ******************
p1(j)=Do1*k*T*log(1+exp((Ef-E1(j))/k/T)); %hole den in heavy
p2(j)=Do2*k*T*log(1+exp((Ef-E2(j))/k/T)); %hole den in light
end
Do1 = md1*m0/3.1415/(hb)^2/6.24146E11; %density of state (#/eV/cm2)
Do2 = md2*m0/3.1415/(hb)^2/6.24146E11; %density of state (#/eV/cm2)
YY1(j,jj)=(Y1(j,jj))^2*p1(jj)/dx0; %hole den. (heavy band in #/cc)
YY2(j,jj)=(Y2(j,jj))^2*p2(jj)/dx0; %hole den. (light band in #/cc)
計算濃度 for Quantum case
R(j) = R(j)+(YY1(j,jj)+YY2(j,jj));
Nep(j) = interp1(xscaleO,R0,xscale(j));
else
Nep(j)=+Nep0*exp(-beta*V0(j));
Nen=+ni^2./Nep(只考慮classical case)
xstart=0.0;
xend=fregion;