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Motivation for Node Classification
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Homophilic and Heterophilic Graphs
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Problem Statement
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[1]Mallat et. al.,XA wavelet Tour of Signal Processing”,Elsevier,1999

[2]Xu et. al., “Graph wavelet neural network,” ICLR, 2018
[3]Zheng et. al., “How framelets enhance graph neural networks,* ICLR, 2021
[4] Zheng et. al. , “Mathnet: Haarlike wavelet multiresolution analysis for graph representation learning,“ Knowledge-Based Systems, 2023.

[5]Li et. al., “Fast haar transforms for graph neural networks,” Neural Networks, 2020.
[6]Xu et. al., “Graph neural networks with lifting-based adaptive graph wavelets,” IEEE Transactions on Signal and Information Processing over Networks, 2022



Related Work
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—» Predefined Wavelet based Approaches [2,3,4,5]
Utilize fix wavelet filters

Require domain specific knowledge

Data preprocessing step is mandatory

» Adaptive Wavelet based Approaches [6,7,8]

Lead to undesirable wavelet filters

[7]Shen et. al., “Optimized distributed 2d transforms for irregularly sampled sensor network grids using wavelet lifting," in IEEE ICASS, 2008
[8]Narang et. al., Lifting based wavelet transforms on graphs,* APSIPA, 2009,



Related Works: Adaptive Wavelet based
Approach
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Proposed Generalized Adaptive Graph
Wavelet Neural Network (GA-GWN)
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Our Contributions

 Limitations of existing wavelet based
methods

* Predefined wavelet filter based methods
consider only homophily assumption.

 Predefined wavelet filter based methods
require domain specific knowledge.

* Adaptive wavelet filter based methods
produces undesirable filters.

e Contributions

* Our Proposed GA-GWNN can generalize to
both homophilic and heterophilic graphs.

* Since proposed GA-GWNN is adaptive
wavelet based approach thus does not require
domain specific knowledge.

* GA-GWNN is able to produce desirable
wavelet filters.

* Also proposed further simple and effective
version SEA-GWNN.

* No need of inverse transform.
e Attention detachment.
e Multiscale information.
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Dataset and Evaluation Metrics

. H()m()phlhc dataset e Evaluation Metrics
« Citation graph[24] (Cora, Citeseer, * Accuracy
PubMed) * Percentage correct prediction
* Heterophilic dataset * Precision
* Webpage graph[i3] (Cornell, Texas, e Recall
Wisconsin
o ) . * F1-Score
 Film industry graph(i3] (Film) , -
* Harmonic mean of precision and
* Large scale graphs . recall
+ Ogbn-Arxiviio] Dataset Statistics
. Ogbn—Pro duc £s[19] Dataset Classes Node_s Edges Features Hom. Ratio
Cora 7 2,708 5,429 1,433 0.81
Citeseer 6 3,327 4,732 3,703 0.74
Pubmed 3 19,717 44,338 500 0.80
Film 5 7,600 33,544 931 0.22
Cornell 5 183 205 1,703 0.30
Texas 5 183 309 1,703 0.11
Wisconsin 5 251 499 1,703 0.21
Ogbn-Arxiv 40 169,343 1,166,243 128 0.66
Ogbn-Products 47 2,449,029 61,859,140 100 0.81




Overall Results

Mean accuracy on semi supervised node classification. Best results are heighted in bold

Methods Cora Citeseer PubMed

GraphSAGE[]9] 745 +08 67.2+10 76.8 +06

GATI10] 830+07 725+07 T79.0+o03 Predefined
“HANet[5] 819 a0 7 79.3 Wavelet Eilter

GWNN|2] 81.6 +0.7 70.5 + 0.6 78.6 +£ 0.3

UFGConvS|3] 83.0+05 71.0+06 794 +04

oo o —
—— =

UFGConvR[3] ___83.6. +06__ 72706 __79.9 %01 . J Adaptive Wavelet

_LGWNNJG] 834 +06 7ll+o4 795405 . method but
Adaptive "UATGWNN 844 ios 781ios 80d0a,  Lundesirablefiter
Wavelet [ e ——
method with
desirable
filterf,9 . . . . . s
JHamilton et. al., “Inductive representation learning on large graphs,”Neurips, 2017

[10] Velickovic et. al., ““ Graph attention networks,” ICLR, 2018. "



Overall Results(3)

Mean Precision, Recall, F1-score on Semi supervised node classification

Precision Recall F1 Score
Cora Citeseer Pubmed Cora Citeseer PubMed Cora Citeseer PubMed
GRAPHSAGE[9] 75.77+0.1 60.68+0.2 77.13+0.6 79.78+1.5 62.70+0.5 75.16+0.6 T78.88+0.7 61.44 +0.6 76.44 +0.6

Method

GATI[10] 75.79+0.1 63.68+0.2 79.13+0.6 79.78+1.5 64.70+05 75.16+0.6 79.88+0.7 63.44 +o.6 74.44 +0.6
HANET[5] 75.77+0.1 60.68+0.2 77.13+0.6 79.78+1.5 62.70+05 75.16+0.6 78.88+0.7 61.44 +to.6 76.44 +0.6
GWNN[2] 77.31 +0.2 66.93 +0.1 76.14 +0.1 79.62 +1.4 61.89 +0.6 79.00 +0.5 78.04 +0.7 63.41 +o.5 77.41 05

UFGCoNVS[3] 79.08+1.8 67.59+2.6 80.04+0.5 78.74+0.6 68.12+90.1 78.19+3.4 66.51+5.1 66.99+5.1 79.7545.1
UFGConVR|[3] 80.01+1.1 67.16+1.0 79.41t06 78.39+1.5 68.30+8.4 77.22+6.7 80.55+5.2 66.47+3.6 79.47+3.6
LGW’NN[ﬁ] 80.21+1.3 67.01+1.9 78.78+0.6 78.60+1.1 68.38+4.9 77.00+7.2 80.45+4.9 66.51+3.1 79.40+3.1
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Overall Results(2)

Mean accuracy on full supervised node classification. Best results are in bold

homophilic graph datasets

heterophilic graph datasets

1

Method/

Acc.(%) Cora Cite. Pubm. Film Corn. Texa. Wisec. Avg. Acc.
’GCN[II] 85.77+0.1 73.684+0.2 88.13+0.6 28.78+1.5 52.70+0.5 52.16+0.6 45.88+0.7 61.44 +0.6
GATI10] 86.37+0.2 74.32+0.2 87.62+0.4 28.99+1.4 54.32+0.3 58.38+0.5 49.41+09 62.77 +0.5
APPNPJ11] 87.87+0.2 76.53+0.2 89.40+1.4 34.86 +1.1 73.51+1.1 65.41+0.1 69.02+1.6 70.94 +0.8
GWNN|2] 85.31 +0.2 73.93 +0.1 88.14 +0.1 26.62 +1.4 61.89 +0.6 60.00 +0.5 48.04 +0.7 63.41 +05

« DEEPWALK[12] 80.08+1.8 53.59+2.6 81.14x0.5

-G-G

om T mm — ——— —

——————————————————————————————————————————————————————————————————

CN[I3] ~ " "84.91+1.1 7516419 8841x06  32.39+1.5 55.68+8.4 66.22+6.7 62.554£5.2°

MixHopr|[14] 87.61+0.8 76.26+1.3 85.31+0.6
H2GCN|[15] 87.69+1.3 75.95+2.1 88.78+0.5
CPGNNJ[16]  87.18+1.1 75.52+1.8 89.08+0.6
GPR-GNNJ[17] 86.70+1.1 75.12+1.9 87.38+0.6
AM-GCNJ[18] 86.66+1.3 76.01+1.9 86.78+0.6

M e e o mmm e e mmm M e e mmm mmm e Rmm Smm mmm e Rmm Smm mmm e Mmm Smm e e Mmm Smm M e Rmm Mmm Smm e Mmm Mmm M e Mmm Mmm Smm e Gmm Mmm S e Mmm Mmm mmm e Rmm Mmm M e Mmm mmm M e e M e e

23.74+06 44.12+9.1 49.19+3.4 53.51+5.1

32.22+42.3 73.51+6.3 T7.84+7.7 75.88+4.9
36.71+1.4 78.92+52 82.16+8.2 82.57+3.2
35.51+1.8 63.51+5.8 74.32+7.3 81.76+6.7
36.47+1.3 82.97+5.6 84.59+4.3 83.92+3.1
33.60+£1.1 78.38+4.9 T7T8.38+7.2 81.76+4.9

55.05+5.1

72.66+3.4
76.11+3.1
72.44+3.6
76.73+2.5
74.51+3.1

66.47+3.6
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Overall Results(3)

Mean accuracy on large scale graphs (full supervised). Best results are highlighted in bold.

Only utilize
graph structur

.

OOM denotes Out of Memory
Method/ Ogbn-Arxiv Ogbn-Products
Acc.(%) Test Acc. Val. Acc. Test Acc. Val. Acc
IMLP[O] 5550023 5765012 G6LOG6xoos 75544002
 Wonudymglall ~_ il7snas Tl2d sy 72A0edn,  d0s2 e |
GRAPHZOOM[21|  71.18+0.18  72.20+0.07  74.06+0.26  90.66+0.11
GRAPHSAGE[9]  71.494027  72.77+0.17  78.29+0.16  92.24+0.07
GCN|11] 71.74+020  73.00x0.17 _ 75.64+0.21  92.0040.03
DEEPERGCN([12] 71924017  72.62+0.14 | 80.98:+0.20  92.38+0.09
SIGN[13] 71.954+0.11  73.231+0.06  80.52+0.16  92.99+0.04
UFGCoNV-S[3] 70.04+0.22  71.0440.11 OOM OOM
UFGCoNV-R[3] 71.97+0.12  73.21+0.05 OOM OOM
GA-GWNN 7'2_2"7;031_ ' 73.64+0. .3r * 80.91 +0.18  92.30 +o0.15

Only utilize
~— graph signal

More depth
— More the cost
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Training time (epoch /sec)

Computational Cost
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Ablation Studies

Performance of GA-GWNN with deeper layer in

supervised task

#Layers
ReigEey. 4 6 8 12 16 20 2
ok, 8332 8349 88.61 88.63 8820 8843 8840 88.53
Citeseer ~ 77.08 7692 76.87 77.10 76.37 76.76 T7.02 76.87
Film 37.16 36.87 37.11 3694 37.25 36.92 36.75 36.88
Cornell  85.16 84.60 81.35 81.76 80.94 79.86 79.80 79.70
Tasoas 8415 84.83 84.16 8430 8238 83.65 82.23 83.00
Wisconsin 8543 8532 85.20 85.49 8520 8471 83.53 83.33

Semi supervised performance with deeper

archijtecture
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Simple and Effective GWNN (SEA-GWNN)

GA-GWNN

Algorithm 1: Implementation of the proposed GA-GWNN model

10
p x|
12
13
14
15
16

Input: Graph (G) adjacency matrix A, node feature matrix X € R
set of ground truth Y, max layer L, number of sample node 7,

Output: Predicted class label: Y.
Initialize model parameters

for epoch +1...m do

RY ¢« X:

for layers, f +—1...L do

E'—”:Tk(j-hf+02/f1-hf—h'f'@é>

T i1t p P

L T H@#hn_
end

Y « Softmax(h?)

L = Loss(Y,))

Backpropagation and update parameters
end

b)

SEA-GWNN

Algorithm 2: Implementation of the proposed SEA-GWNN model

Input: Graph (G) adjacency matrix A, node feature matrix X € RV x4,
set of ground truth ), max layer L
Output: Predicted class label: Y.

1 Initialize model parameters
2 for epoch +1...m do
3 Hy, flo +— X
4 | e kT L e e -
s [ U ATT,(G,X) |
7 | for layers, [+-1.7" L do
8 H, « .AHf_l 3
9 H[ — Z:l I:I[_l
10 | [ 7% DeCompose
11 Ze—aHe +He ® &
12 Z += 2y
13 end
14 Y « Softmax(Z)
15 L =Loss(Y,))
16 Backpropagation and update parameters

17 end

19



SEA-GWNN(2)
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Overall Results

Mean accuracy on full supervised node classification. Best results are highlighted in bold

homophilic graph datasets

heterophilic graph datasets

Method/

Acc.(%) Cora Cite. Pubm. Film Cham. Squi. Corn. Texa. Wisc.
GCN[11] 85.77+0.1 73.68+0.2  88.13+0.6 28.78+1.5  28.18+0.78 36.89+1.34  52.70+0.5  52.16+0.6  45.88+0.7
GAT/[10] 86.37+0.2 74.32+0.2  87.62+04  28.99+1.4  42.93+046  30.62+2.11  54.32+0.3  58.38+0.5  49.4110.9
APPNPI11] bT 87+0.2 76.53+0.2  89.40+1.4 34.86 1.1 54.30 +0.56 34.77 +0.34 73.51+1.1  65.41%0.1 69.02+1.6
GWNN|2] 85.31 +0.2 73.93 +0.1 88.14 +0.1 26.62 +1.4 - - 61.89 +0.6 60.00 0.5 48.04 0.7
G-GCNJ13] 84.91+1.1 75.16+1.9 88.41+0.6  32.39+1.5 61.06+0.49  38.2840.27  55.68+8.4 66.22+6.7 62.55+5.2
MixHor[14] 87.6110.8 76.26+1.3  85.31+0.6 32.22+2.3  60.50+2.53 43.80+1.48 73.51+6.3  T7.84+7.7  T75.881+4.9
H2GCNJ15] 87.69+1.3 75.9542.1 88.78+0.5  36.71+1.4  58.38+1.76  37.90+2.02 78.92+5.2  82.16+8.2  82.57+3.2
CPGNN]J16] 87.18+1.1 75.52+1.8  89.08+0.6 35.51+1.8  65.24+0.87 45.00+1.40 63.51+5.8  74.32+73  81.7616.7
GPR-GNNJ[17]  86.70+1.1 75.12+1.0  87.38+0.6 36.47+1.3 65.42+2.04 49.9310.53 82.97+56 84.59 +43 83.92+3.1
AM-GC‘:\T[N' 86.66+1.3 76.01+1.9  86.78+0.6 33.60+1.1  68.46+1.70 40.02+0.96 78.38+4.9  T78.38+7.2  81.76+4.9

Mean accuracy on semi supervised node classification with best results are highlighted in bold

Methods Cora Citeseer PubMed
GRAPHSAGE[9] 745 +08 672 +1.0 76.8 +0.6
GATI10] 83.0 0.7 725 +07  79.0 +0.3
HANET[5] 81.9 70.1 79.3
GWNN[2] 81.6 +0.7  70.5 0.6  78.6 +0.3
UFGConvS[3] 83.0 z05 71.0 06 79.4 o4
UFGConVvR[3]  83.6 +0.6 72.7 +0.6  79.9 +o0.1
LGWNNI6] 834 +06 T71.1 +04  79.5 05
"SEA-GWNN "~ '84.4'403 72803 80.7 102 |

B ommm s mmm n mmm s s o n mE s EEm R mEm W EEm A mEm R EEm N EEm R M A MmN M A R Emm A B mm P
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Overall Results(2)

Mean accuracy on large scale graphs node classification. Best results are highlighted in bold

Methods Penn94 Arxiv-Year Genius Arxiv

MLP|[19] 73.61 +0.40  36.70 0.21  86.68 +0.00  55.00 +0.025
LABEL Propr.[19] 74.13 046  46.07 +0.15  67.04 020  68.32 +0.00
GCNJ11] 82.47 +0.27  46.02 +0.26  87.42 +0.37  71.74 +0.29
CHEBNET|[20] 82.51 +0.31  46.76 +0.24  89.36 +0.31  71.72 +0.22
GAT[11] 81.53 +0.55  46.05 +0.51  55.80 +o0.87  71.95 +o0.11
GCNJK|[20] 81.63 +0.54  46.28 +0.20  89.30 +o0.19  72.19 +o0.21
GCNII|[21] 82.92 +0.50  47.21 +0.28  90.24 +0.09  72.74 +0.16
H2GCN][15] 81.31 +0.60 OOM OOM OOM

GPRGNN]J17] 81.38 +0.16  45.97 +0.26  90.05 +0.31  71.78 +0.18
UFGConvV/|3] OOM OOM OOM 71.97 +o0.12

———————————————————————————————————————————————————————




Overall Results(3)

Graph level classification and prediction

Datasets PROTEINS Mutagenicity D&D NCI1 QM7
TorKPooL 73.48 +3.57 79.84 +2.46 7T4.87 £4.12 75.11 +3.45 175.41 +3.16
ATTENTION 73.93 +5.37 80.25+2.22 T7.48 £265 T74.04+1.27 177.99 +2.22
SAGPooL 75.80 +2.901 79.86 +2.36 74.96+3.60 76.30+1.53 41.93 +1.14
SUM 74.91 +4.08 80.69 +3.26 78.91 +£3.37 76.96 +1.70 42.09+0.91
MAX 73.57 +£3.94 78.83 +1.70 75.80 £4.11 75.96 +1.82 177.48 +4.70
MEAN 73.13 +3.18 80.37 +£2.44 76.80 +2.23 73.70 £2.55 177.49 +4.69
UFGPooL T7.77+2.60 81.59 +1.40 80.92+1.68  T7.88+1.24 41.74+0.84
GWNN [31] 73.35 £3.71 74.26 +2.29 75.04 £4.55  69.79+1.67 -
LGWNN [33]  74.02 +5.23 82.47 £1.90  78.72 £4.33 78.97 +2.07 -
OURS 80.23+0.51 80.29 +1.62 80.39+0.49 - 40.95+0.83

[5]H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, Geom-gcn: Geometric graph convolutional networks," in International Conference on Learning Representations, 2019.
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Model Analysis

Computational Cost O(|N|d ind out+ L|E|d out)
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Layers

Model performance on deeper architecture

Datasets/ The number of graph convolutional layers &
Accuracy (%) 9 4 6 8 16 28 32
Cora 82.46 84.04 84.38 84.34 82.52 82.86 80.86

PubMed 7990 79.44 79.84 80.34 80.74 7994 79.92




* Proposed a novel class of algorithm namely GA-GWNN that
produces desirable wavelet filters.

* Proposed a novel lifting scheme namely tree lifting scheme that
preserve the original graph structure.

* Our proposed GA-GWNN can learn wavelet filters on arbitrary
graphs.

* Experimental results demonstrate the superiority of our
proposed algorithm.

 Further proposed a simple and more scalable version of
GA-GWNN namely SEA-GWNN
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