
Deploy a Serverless WSGI App using
Zappa, CloudFront, RDS, and VPC

Brian Jinwright, Senior Software Engineer
MetaMetrics Inc.
@brianjinwright

Brian Jinwright (aka Young Python Stacks)
● Python as a primary language since 2007
● AWS since 2007
● I work at MetaMetrics Inc in an attempt to build cool tools for your kids and

educators. We are hiring!!
● I am a Zappa contributor but I’m no way the best authority on this subject.
● Join the Zappa Slack community (https://slack.zappa.io/)
● Read the Zappa docs (https://github.com/miserlou/zappa)
● I’m not brave. There will not be any live coding or live deployments.
● More details?

https://jinwright.net/how-deploy-serverless-wsgi-app-using-zappa/

https://slack.zappa.io/
https://github.com/miserlou/zappa

What is Serverless?
TLDR; Refers to using a Function as a Service (FaaS) like AWS’ Lambda offering
to handle the bulk of the compute needs for your application. Also, it can be
described as using a FaaS in conjunction with other services like API Gateway,
SNS, and S3.

Sexy Advantages:

● 100% Utilization
● Highly Scalable
● Easily Deployable
● More affordable to deploy multi-region applications

What is WSGI?
WSGI is the Web Server Gateway Interface. It is a Python specification that
describes how a web server communicates with web applications, and how web
applications can be chained together to process one request.

WSGI is a Python standard described in detail in PEP 3333.

Let’s Get Started
1. AWS Steps
2. Code and Local Environment
3. Zappa Steps
4. CloudFront Steps (Optional)

AWS Steps
These steps are AWS focused and I am only adding them to the slides so you know what
happens. I recommend that you write a CloudFormation template (use Troposphere) to
automate these tasks for future deployments.

Troposphere (https://github.com/cloudtools/troposphere)

https://github.com/cloudtools/troposphere

1. Create Two Four S3 Buckets (in different regions)
You should only have to complete this stage once even if you create a CloudFormation template
in the future. We are creating one bucket for Zappa to store our code when deploying and
another to store static files (css, images, and js).

Note: By default Zappa will only store your code in the function bucket briefly while deploying (zappa
deploy) or updating (zappa update) the Lambda function

2. Configure your VPC
Maybe your app doesn't need a VPC. I personally believe if you are running a
database that uses RDS and ElastiCache you need a VPC. Next are a list of
things I recommend to get a Zappa powered app working with VPC, RDS, and
Elasticache.

2a. Create Public and Private Subnets
Create at least two public and private subnets in different availability zones.

2b. Create a NAT Gateway
This NAT Gateway will enable your Lambda functions in a private subnet to connect to the
Internet or other AWS services, but prevent the Internet from initiating a connection with those
instances. Associate your NAT Gateway with one of your private subnets. This is needed if you are
planning on using any public API (MailChimp, Twilio, etc.) other than S3's.

2c. Route Table
Route tables will control the routing for your subnets. You could setup a different
route table for each subnet but for the purposes of this guide we're setting one for
the private subnets and one for the public ones. Afterwards you should associate
our subnets we will route 0.0.0.0/0 traffic to our NAT Gateway for our private
subnets and 0.0.0.0/0 to our Internet Gateway for our public subnets.

2d. Create a VPC Endpoint for S3
This is needed so your Lambda function can communicate with S3's API. This
comes in handy later when you run zappa manage "collectstatic --noinput".

2e. Create a Custom IAM Policy
By default, the Zappa client will create and manage the necessary IAM policies
and roles to execute Zappa applications. However, if you're using Zappa in a
corporate environment or as part of a continuous integration, you may instead
want to manually manage your remote execution policies instead.

Note: PLEASE DO THIS!!!!!!

3. Create a MySQL, Aurora, or MariaDB instance(s)
Create a MySQL instance(s) and associate it with the VPC and subnets you
created in the previous step.

4. Create Redis Cluster with ElastiCache
Create a Redis instance(s) and associate it with the VPC and subnets you created
in step 2.

Still There?

Code & Local Environment Steps
You got it!! These are the steps that will require a change in your code or your
local environment. Mainly the stuff you normally do when you start a new Django
project.

1. Install virtualenv, virtualenvwrapper, and eva globally

This step is only useful if you plan on working on this project locally without something like
Docker or Vagrant. If you just install eva it will install the other two.

sudo pip install eva

2. Install zappa, envs, django, django-storages, etc.

pip install zappa envs django mysql-python django-storages boto django-redis

3. Create a project

django-admin startproject yourblog

4. Use environment vars in your settings.py

5. Create a custom storage backend
Partially stolen from Caktus’ Blog https://goo.gl/WLYZD7

Zappa Steps
List of the various Zappa steps that you need to run.

1. Run zappa init
This command just creates a zappa_settings.json configuration file. You will
answer questions pertaining to the S3 buckets you created earlier and the default
stage for your app. After the initial setup is complete open the settings file to
reference the environment variable JSON file you created earlier and the private
subnets and security groups you created.

1. Run zappa init

Run zappa deploy dev
This command will deploy the app to Lambda and setup API Gateway. You will
only run this command one time. After the first time you will only need to run the
update command.

3. Run zappa manage dev migrate
This command is only needed for Django projects. The zappa manage migrate
command is the equivalent of python manage.py migrate generally used for
Django apps.

Run zappa certify dev
Run this command to request a SSL cert from the Let's Encrypt project and apply
it to your API Gateway stage. It uses the domain you entered above in the
zappa_settings.json file for the stage you are deploying.

Run zappa manage "collectstatic --noinput"
This command runs another one of Django's management commands,
collectstatic. It will gather all of the static files (css, js, images, and videos) and
upload them to S3 from inside the Lambda function. Since the files were already
uploaded inside of the zip file Zappa deploys the upload to S3 is really fast.

CloudFront Steps (Optional)

Questions?
Twitter: @brianjinwright

Zappa Slack Channel: https://slack.zappa.io

https://slack.zappa.io

