1
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Welcome to the lecture �Applied Machine & Deep Learning (190.015)
Telefon: +43 3842 402 - 1901 �Email: teaching@ai-lab.science
Univ.-Prof. Dr. Elmar Rueckert�
WO AUS FORSCHUNG ZUKUNFT WIRD
Chair of Cyber-Physical-Systems
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
What do we expect from you?
3
Details about the organization, the grading, the links to our services, etc. will follow after the lunch break today.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Let’s start with an introduction to machine learning.
4
Quiz on ML, please visit: https://tweedback.de/e44m
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Definition of Machine Learning
5
Machine learning is a branch of artificial intelligence (AI) focusing on the design and development of algorithms that allow computers to learn from data.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Definition of Deep Learning
6
Deep learning is a subfield of machine learning that involves the use of artificial neural networks, specifically deep neural networks, to model and solve complex problems.
Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Ngoc Thinh. Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot
International Conference on System Theory, Control and Computing (ICSTCC), 2023.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Definition of Artificial Intelligence
7
AI are algorithms for problem solving, inference and learning with the goal of mimicking human intelligence and behavior.
From Annamacharya Institute of Technology & Sciences Autonomous / Rajampet, India.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
The Big Picture
8
Deep Learning
Machine Learning
Artificial Intelligence
Mimicking the human intelligence or behavior, or of any other living entity.
Techniques that allow machines to learn from data.
ML based on neural networks inspired by our brain’s network of neurons.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
The Machine Learning Process
9
Figure by Google Cloud Tech, https://youtu.be/HcqpanDadyQ
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Types of Machine Learning
3. Behavioral or �Reinforcement Learning
2. Descriptive or Unsupervised Learning
1. Predictive or �Supervised Learning
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Types of Machine Learning
3. Behavioral or �Reinforcement Learning
2. Descriptive or Unsupervised Learning
1. Predictive or �Supervised Learning
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Types of Machine Learning
3. Behavioral or �Reinforcement Learning
2. Descriptive or Unsupervised Learning
1. Predictive or �Supervised Learning
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Types of Machine Learning
13
Supervised Learning
Unsupervised Learning
Reinforcement Learning
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Is it sufficient to just apply some tools?
14
+
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Motivation for Studying Machine Learning Concepts
15
From ThyssenKrupp, Oct. 2023.
Prediction results of steelmaking defects from the Master thesis of Melanie Neubauer, M.Sc. from 2023.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Motivation for Studying Machine Learning Concepts
16
Have a look at our book.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Motivation for Studying Machine Learning Concepts
17
Typical evaluation of multiple learning methods on multiple ‘runs’, from Sheller et al. 2020.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
ML Examples
18
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Some Projects
19
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
20
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
21
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Research Projects I
22
1 Stud. Ass. 80k€
Hybrid modelling of steel casting processes.
https://superior-ind.com
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Research Projects
23
1 Stud. Ass. 80k€
Hybrid modelling of steel casting processes.
https://superior-ind.com
voestalpine Stahl GmbH
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Research Projects
24
1 Stud. Ass. 80k€
Hybrid modelling of steel casting processes.
https://superior-ind.com
voestalpine Stahl GmbH
Particle Tracking, CPS 2023
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Research Projects
25
1 Stud. Ass. 80k€
Hybrid modelling of steel casting processes.
https://superior-ind.com
voestalpine Stahl GmbH
Particle Tracking, CPS 2023
Robot LAB CPS
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Research Projects
26
1 Stud. Ass. 80k€
Hybrid modelling of steel casting processes.
https://superior-ind.com
voestalpine Stahl GmbH
Particle Tracking, CPS 2023
Robot LAB CPS
CPS TRAIN
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Industrial Projects
27
Bachelorthesis
Deep learning for manufacturing time predictions from 3D CAD files.
�
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Probabilistic Robot Learning
Dave, Vedant; Rueckert, Elmar. Predicting full-arm grasping motions from anticipated tactile responses. International Conference on Humanoid Robots (Humanoids 2022), 2022.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Autonomous Navigation and Mapping
29
Nwankwo, Linus; Fritze, Clemens; Bartsch, Konrad; Rueckert, Elmar. O2S: Open-source open shuttle. Journal Article under review, 2022.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Startup on Autonomous Hospital Guides
30
Proof of Concept (done)
Technology demonstrator (Aug/2023)
Research
Technology
Commercial Partner
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Startup on Autonomous Hospital Guides
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Outdoor Navigation, Mapping & LLMs
32
Dynamic obst.
Elevated terrain
Start pose
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
33
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Industrial Process Modelling
34
Industrial Project with the Stahl- und Walzwerk Graz Marienhütte
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
AI-based Recycling of Steel Scrap (KIRAMET)
35
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
36
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
37
Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan
Recurrent Spiking Networks Solve Planning Tasks Journal Article
In: Nature Publishing Group: Scientific Reports, vol. 6, no. 21142, 2016.
Tanneberg, Daniel; Paraschos, Alexandros; Peters, Jan; Rueckert, Elmar
Deep Spiking Networks for Model-based Planning in Humanoids Proceedings Article
In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016.
Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article
In: Neural Networks – Elsevier, vol. 109, pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
38
A Neuroinspired Plannig Approach
Pfeiffer, B. & Foster, D. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
A Neuroinspired Planning Approach
39
Planning as Inference
Planning in Spiking Neural Networks
xt
xT
Learning
Inference
Adaptive/Dynamic Constraints
xt+1
Proof for optimal planning as inference in recurrent neural networks!
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
A Neuroinspired Planning Approach
40
Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan. Recurrent Spiking Networks Solve Planning Tasks. Nature Publishing Group: Scientific Reports, 6 (21142), 2016.
The Model:
Sensor/Motor Inputs
System Dynamics
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
A simple Motion Planning Example
41
Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan. Recurrent Spiking Networks Solve Planning Tasks. Nature Publishing Group: Scientific Reports, 6 (21142), 2016.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar. Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks. Neural Networks - Elsevier, 109 , pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).
Real-Time Planning & Control
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Reinforcement learning of motion plans
Supervised state transition model learning
Real-Time Planning & Control
Factorized Population Codes
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
44
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
45
Xue, Honghu; Hein, Benedikt; Bakr, Mohamed; Schildbach, Georg; Abel, Bengt; Rueckert, Elmar
Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics Journal Article
In: Applied Sciences (MDPI), Special Issue on Intelligent Robotics, 2022.
Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Ngoc Thinh
Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot Proceedings Article
In: International Conference on System Theory, Control and Computing (ICSTCC), 2023, (October 11-13, 2023, Timisoara, Romania.).
Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Thinh
Deep Reinforcement Learning for Autonomous Navigation in Intralogistics Workshop
2023, (Extended Abstract.).
Xue, Honghu; Song, Rui; Petzold, Julian; Hein, Benedikt; Hamann, Heiko; Rueckert, Elmar
End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments Proceedings Article
In: International Conference on Humanoid Robots (Humanoids 2022), 2022.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
46
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
47
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Reinforcement Learning
Movement Primitives
Humanoid Robotics
Spiking Neural Networks
Intrinsic Motivations
Human-Machine Int.
Robotics Health Care
Postural Control
Muscle Synergies
Tactile Learning
Model Learning
Probabilistic Inference
Probabilistic Computational Neuroscience
Medical Robotics and Human Motor Control
Probabilistic Robot Learning
Stochastic Machine and Deep Learning
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
49
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Course Materials, Links & Literature
50
Other ML books
Video Lectures:
free online version
At our library
free online version
At our library
At our library
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS
Thank you for your attention!
Visit our Youtube Channel: https://youtube.com/@CPSAustria
Phone: +43 3842 402 – 1901 (Sekretariat CPS)
Email: cps@unileoben.ac.at
Web: https://cps.unileoben.ac.at
Disclaimer: The lecture notes posted on this website are for personal use only. The material is intended for educational purposes only. Reproduction of the material for any purposes other than what is intended is prohibited. The content is to be used for educational and non-commercial purposes only and is not to be changed, altered, or used for any commercial endeavor without the express written permission of Professor Rueckert.
MONTANUNIVERSITÄT LEOBEN
CYBER-PHYSICAL-SYSTEMS