

Rock solid Device Connectivity

Kai Hudalla, Bosch.IO GmbH

Smart Home Example

First rule of distributed systems: Don't distribute.

unknown origin

"The 8 Fallacies of Distributed Computing"

Peter Deutsch, James Gosling

- The Network is reliable.
- 2. Latency is zero.
- Bandwidth is infinite.
- The network is secure.
- 5. Topology doesn't change.
- There is one administrator.
- 7. Transport cost is zero.
- 8. The network is homogeneous.

← Tweet

There are only two hard problems in distributed systems: 2. Exactly-once delivery 1. Guaranteed order of messages 2. Exactly-once delivery

8:40 nachm. · 14. Aug. 2015 · Twitter for Android

7.298 Retweets 156 Zitierte Tweets 6.540 "Gefällt mir"-Angaben

Smart Home Example deployed

How to transmit the Data?

Use an existing application layer protocol and encode data in the payload

Application Layer Protocols of Choice

Protocol	Transport	Authentication	Meta Data	Pros/Cons	
AMQP 1.0	TCP	SASL	connection, link, message	(+) feature rich, compact (+) flow control (-) few implementations	
MQTT 5	TCP	TLS, (SASL), MQTT	message	(+) feature rich, compact (-) few implementations	
CoAP	UDP	DTLS	message	(+) very compact (+) "binary HTTP"	
HTTP	TCP	TLS, HTTP	message	(+) many implementations (-) verbose	
MQTT 3.1.1	TCP	TLS, MQTT	no	(+) many implementations (-) no NACKS	

Use Transport Layer Security (TLS)

- OpenJDK
- BouncyCastle
- Eclipse tinydtls
- **Eclipse Californium**

Full TLS 1.2 Handshake Protocol

Abbreviated TLS 1.2 Handshake Protocol ("session resumption")

Device		Back End
ClientHello		0
	*	ServerHello
		ChangeCipherSpec
		Finished
ChangeCipherSpec		
Finished		

Comparison of Cipher Suite Types

	RSA	ECDSA	PSK	
Processing requirements	Cortex M4 class (HW Security Module?)	Cortex M3 class (e.g. Cortex M33 incl. HSM)	Cortex M0 class	
Certificate size	1-2 kb	< 1 kb	0 b	
Typical key length (bits)	2048	224-255	112	
Example TLS 1.2 Suite	TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256, TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	
Full handshake size	4-7 kb	2-4 kb	< 1 kb	
Abbr. handshake size	< 500 b	< 500 b	< 500 b	

https://sectigostore.com/blog/ecdsa-vs-rsa-everything-you-need-to-know/

https://danielpocock.com/rsa-key-sizes-2048-or-4096-bits/

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.html

Best Practices

- Do not implement your own custom security layer!
- Use TLS 1.3 if possible, **never** use TLS < 1.2
- Configure an appropriate¹ set of cipher suites (on device AND back end)
- Include server certificate's issuer in device's trust store
- Use session resumption if possible
- Use DHE for perfect forward secrecy if appropriate
- Think about key/secret rotation as a requirement of your system

¹ according to your device's resources and the required level of security

Several (logical) connections need to be established

Before a device can send any data, all connections need to be established!

Reliable Transmission Cost

Hello, would you like to hear a TCP joke?

Yes, I'd like to hear a TCP joke.

OK, I'll tell you a TCP joke.

OK, I'll hear a TCP joke.

Are you ready to hear a TCP joke?

Yes, I am ready to hear a TCP joke.

OK, I'm about to send the TCP joke. It will last 10 seconds, it has two characters, it does not have a setting, it ends with a punchline.

OK, I'm ready to hear the TCP joke that will last 10 seconds, has two characters, does not have a setting and will end with a punchline.

I'm sorry, your connection has timed out... ...Hello, would you like to hear a TCP joke?

Best Practices for establishing a Connection

- Use DNS to resolve back end host's IP address.
- Cache DNS data for short time only
- Register handler for connection establishment outcome
- Use an aggressive connection timeout
- Enable application layer protocol's ping/keep alive/heartbeat mechanism
- Use (exponential) backoff when retrying to connect

Sending Messages using AMQP 1.0

Using a Disposition Handler

Best Practices for sending a Message

- Register handler for message transmission outcome
- Use an aggressive (N)ACK timeout
- Use (exponential) backoff when retrying failed attempt(s)

Sending Messages using MQTT 3.1.1

MQTT 3.1.1

Evaluate the Sessions

- Please help by leaving feedback on the sessions you attend!
- To rate a session, you must be registered for it in Swapcard BEFORE the talk starts.
- Swapcard will prompt you to leave feedback after the end of each session.
- You may also rate a talk by locating the session from the "Agenda" or "My Event" buttons on the Event Home page. Click on the session and look for the "Give your feedback" box.

Thank you!

Join the conversation:

Rock solid Device Connectivity

