
Documenting Invariants

TC39, July 2020
Yulia Startsev

Current Status

● Some Invariants are documented directly in the specification.

● Undocumented Invariants are sometimes overlooked

● Some invariants have been proposed and contested

● So far, an Invariant has not required consensus in order to be adopted by the committee, they are

informally applied.

● Invariants can and should change. The requirements for change should be written down.

https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods

Idea: Collect and write down Invariants

● Will allow for knowledge sharing and the understanding of concerns

● Will ensure that cases where invariants are broken are clear and recognized

● Will ensure that even if a specific committee member is not present -- that the invariant is

acknowledged.

● Invariants, if they are broken, should put the specification into a buggy state. Invariants should be

Normative.

Definitions are loose right now

● Invariant can mean “a property of the specification that has been true up to the present”

● Invariant does not cover all guidelines
○ What about things we want to avoid?
○ What about properties of the spec which cannot be written down?
○ What about design concerns?

For now...

● Let us consider “Invariant” to be any protected property of the specification

Current Invariants

Alternative expression of an invariant

Structural overview

Structuring Invariants

Every invariant (section) should have:

● A description
○ Clear explanation of what the invariant is

● A set of definitions
○ Any key words that may be ambiguous must be defined

● A list of associated features of the invariant

Structuring Invariants

Every invariant (section) should have:

● A description
○ Clear explanation of what the invariant is

● A set of definitions
○ Any key words that may be ambiguous must be defined

● A list of associated features of the invariant

● A rationale
○ Referenced when the validity of the invariant is questioned

Invariant “Types”

Invariants should be normative. So far we have grouped them in these three categories.

● “Must/Must Not” invariants
○ Invariants that, if violated, put the specification into a buggy state

● “Should/Should Not” invariants
○ Invariants that have an “allow list” of cases where they can be broken
○ Otherwise, if these invariants are violated the specification is in a buggy state

● “Precedents”
○ Invariants that cannot be captured by specification text alone. A precedent references a decision made by the

committee. (Example: Module resolution graph order and why it cannot be changed)

Process for Proposing an Invariant

A few potential ways to handle this:

● Follow the same process as Normative Changes / Needs Consensus PRs
○ An invariant can be introduced more quickly.
○ This will make it easier to document existing ones that we have acted on

● Follow something closer to the Proposal Process
○ Will require multiple meetings to be adopted
○ More discussion time

● Other ideas welcome.

Some Open Questions:

● Do these categories cover the types of meta-information used by the committee to make

decisions?

● Are there any clear dangers here?

● How should this proposal be iterated upon?

Ongoing work

● See documenting invariants

● Discussions have been taking place in SES

https://github.com/codehag/documenting-invariants

Discussion

Addendum: Clarifying the process

