Investigating & Evaluating Truss Designs

Empowering Structural Engineers to Diagnose, Investigate, and Innovate with Confidence

Presented by John Holland - President/CEO

Learning Objectives:

1

Model Trusses

Assess existing truss designs for new conditions.

2

Understand Assumptions

Identify common loading and analysis practices in wood truss design.

3

Evaluate Modifications

Investigate and identify key controlling information to design effective solutions.

Background & Experience

- 3rd Generation Component
 Manufacturer
- Founder of Paragon
- Extensive involvement in SBCA
- Visiting lecturer at Virginia Tech
- Guest speaker BCMC

How Structural Engineers Relate to Wood Trusses

Multiple Roles to Solve Complex Structural Challenges

Doctor

Identify weaknesses and recommend solutions.

Detective

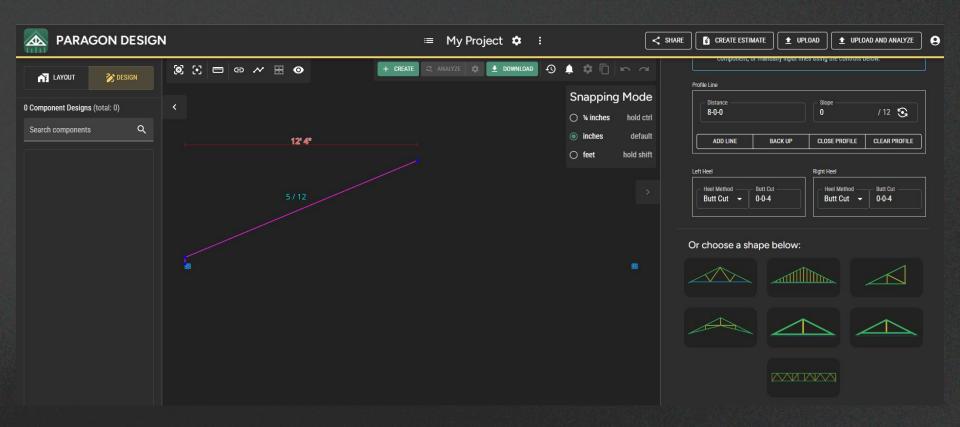
Trace root causes and analyze incomplete data.

Designer

Develop designs to meet customer needs.

Doctor

Prescribing Wood Truss Repairs and Remedies

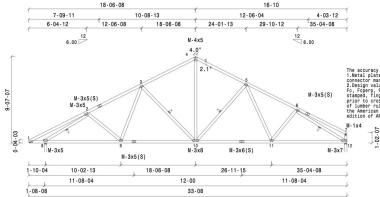

Problem: truss modifications or damage have compromised the structural integrity,

Use Paragon to Model Truss Stresses

Detective

Forensically Investigating Wood Truss Failures

LUMBER SPECIFICATIONS


TC LATERAL SUPPORT 24"OC. UON. BC LATERAL SUPPORT 24"OC. UON.

M-3x4 where shown; Jts:1,3,5-6,9,11 Unbalanced live loads have been considered for this design. Connector plates provided by MiTek. TRUSS SPAN 35'- 4.5" LOAD DURATION INCREASE = 1.25 SPACED 24.0" O.C.

LL(20.0)+DL(10.0) ON TOP CHORD = 30.0 PSF DL ON BOTTOM CHORD = 10.0 PSF TOTAL LOAD = 40.0 PSF

BOTTOM CHORD CHECKED FOR A 20 PSF LIMITED STORAGE LIVE LOAD AT LOCATION(S) SPECIFIED BY IBC 2006.
THE BOTTOM CHORD DEAD LOAD IS A MINIMUM OF 10 PSF.

+ Web Member 2x4 Continuous Lateral Restraint (CLR) with Diagonal Bracing (DB) or 2x Reinforcement Required. Refer to BCSI-B3 for attachment and additional information, or as specified by the Building Designer.

JOB NAME: 9441 - MEADOW BROOK - T-10

Truss: T-10 DES. BY: Jason0 DATE: 11/15/2010 SEQ.: T-10

TRANS ID: 9441

WARNINGS: 1. Builder and erection contractor should be advised of all General Notes.

- and Warnings before construction commences. 2. 2x4 compression web bracing must be installed where shown +.
 3. All lateral force resisting elements such as temporary and permanent stability bracing must be designed by designer of complete structure.
- CompuTrus assumes no responsibility for such bracing.

 4. No load should be applied to any component until after all bracing and fasteners are complete and at no time should any loads greater than
- design loads be applied to any component.

 5. CompuTrus has no control over and assumes no responsibility for the
- fabrication, handling, shipment and installation of components.

 This design is furnished subject to the limitations set forth by TPI/WTCA in BCSI, copies of which will be furnished upon request.

- GENERAL NOTES, unless otherwise noted:

- GENERAL NOTEs, urises ofherence noted:

 1. The tiss design is designed presenters shown. Rulew the time design parameters shown. Rulew the time design parameters shown. Rulew the time designed or time designed
- necessary.

 7. Design assumes adequate drainage is provided.

 8. Plates shall be located on both faces of fruss, and placed so their center.

 9. Digits indicate size of plate in Inches.

 10. For basic connector plate design values see ESR-2529 (CompuTrus) and/or ESR-1311, ESR-1888 (Affre).

CompuTrus, Inc. Software +7.5.3.1F(1L)-E

1-2=(-483) 353 1-8=(-221) 355 2-3=(-219) 821 8-9=(-87) 1814 3-4=(-1817) 715 9-10=(-870) 1738 4-5=(-1811) 712 10-11=(-673) 1711 5-6=(-2109) 829 11-12=(-719) 1817 6-7=(-89) 134 ROES 4MM/DSP/CQ=1.00 PMM 8-2=(-2495) 1346 11-6=(-94) 111 2-9=(-87) 110 6-12=(-2250) 948 9-3=(0) 292 12-7=(-144) 185 3-10=(-544) 212 10-4=(-232) 1074 -533) 229 0) 311

MAX HORZ BRG REQUIRED BRG LENGT REACTIONS SIZE INCHES (SPECIES) 86/ 188H 3.50" 1.71 SP (565) 86/ 188H 3.50" 1.74 SP (565) REARTING MAY VERT REQUIRED BRG LENGTH LOCATIONS REACTIONS -141/ 1607V -133/ 1476V

1'- 8.5" 1.55 DF/ 2.39 HF/ 2.28 SPF 35'- 4.5" 1.57 DF/ 2.43 HF/ 2.31 SPF

MAX LL DEFL = -0.012* (L/1708) @ 0'- 0.0* L/120 = 0.171* MAX TL DEFL = -0.014* (L/1464) @ 0'- 0.0* L/90 = 0.228* MAX LL DEFL = 0.120* (L/3308) @ 18'- 6.5* L/240 = 1.654* MAX TL DEFL = -0.181* (L/2193) @ 18'- 6.5* L/180 = 2.206*

MAX HORIZ. LL DEFL = -0.055" @ 35'- 1.0"

Design conforms to main windforce-resisting system and components and cladding criteria.

Wind: 100 mph, h=15ft, TCDL=6.0,BCDL=6.0, ASCE 7-05, Enclosed, Cat.2, Exp.B, MWFRS, gable end zone, load duration factor=1.6

Max CSI: TC:0.68 BC:0.74 Web:1.00

Design checked for a 300 lb concentrated top chord live load per IBC 2006 due to maintenance workers which is non-concurrent with other live loads.

The accuracy of this Truss Design Drawing relies upon accurate: 1.Metal plate connector design values as published by the plate connector manufacturer.

 Design values for solid sawn lumber. Design values (E, Emin, Fb, 2.Design values for solid sawn lumber. Design values (t, tenn, to, fc, Feper, Ft, and Fv) for solid sawn lumber and approved, grade stamped, finger jointed lumber shall be defined by the grade stamped prior to cross cutting and in accordance with the published values of lumber rules writing agencies approved by the Board of Review Of the American Lumber Standards Committee in accordance with the latest edition of ANSI/TPI 1 section 6.3.

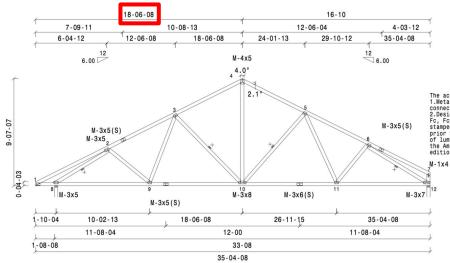
Scale: 0.1691

LUMBER SPECIFICA

LUMBER SPECIFICATIONS TC: 2x4 SP #2 BC: 2x4 SP #2 WEBS: 2x4 SP #3

TC LATERAL SUPPORT 24°0C. UON. BC LATERAL SUPPORT 24°0C. UON. M-3x4 where shown; Jts:1,3,5-6,9,11 Unbalanced live loads have been

considered for this design.


Connector plates provided by MiTek.

TRUSS SPAN 35'- 4.5" LOAD DURATION INCREASE = 1.25 SPACED 24.0" O.C.

LL(20.0)+DL(10.0) ON TOP CHORD = 30.0 PSF DL ON BOTTOM CHORD = 10.0 PSF TOTAL LOAD = 40.0 PSF

BOTTOM CHORD CHECKED FOR A 20 PSF LIMITED STORAGE LIVE LOAD AT LOCATION(S) SPECIFIED BY IBC 2006. THE BOTTOM CHORD DEAD LOAD IS A MINIMUM OF 10 PSF.

+ Web Member 2x4 Continuous Lateral Restraint (CLR) with Diagonal Bracing (DB) or 2x_ Reinforcement Required. Refer to BCSI-B3 for attachment and additional information, or as specified by the Building Designer.

JOB NAME: 9441 - MEADOW BROOK - T-10

Truss: T-10

DES. BY: Jason0 DATE: 11/15/2010 SEQ.: T-10

TRANS ID: 9441

WARNINGS:

 Builder and erection contractor should be advised of all General Notes and Warnings before construction commences.

2. 2x4 compression web bracing must be installed where shown +.
 3. All lateral force resisting elements such as temporary and permanent

Nu lateral force resisting elements such as temporary amb permanent stability bracing must be designed by designer of complete structure. CompuTrus assumes no responsibility for such bracing.
 No load should be applied to any component until after all bracing and fasteners are complete and at no time should any loads greater than

design loads be applied to any component.

CompuTrus has no control over and assumes no responsibility for the fabrication, handling, shipment and installation of components.

 This design is furnished subject to the limitations set forth by TPI/WTCA in BCSI, copies of which will be furnished upon request. CompuTrus, Inc. Software +7.5.3.1F(1L)-E Scale: 0.1691

GENERAL NOTES, unless otherwise noted:

1. This truss design is adequate for the design parameters shown. Review and approval is the responsibility of the building designer, not the truss designer or truss engineer.

Design assumes the top and bottom chords to be laterally braced at 2 o.c. and at 10 o.c. respectively unless braced throughout their length by continuous sheathing such as plywood sheathing [TO] and/or drywall [BC].
 X Impact bridging or lateral bracing required where show + 14
 Installation of fruss is the responsibility of the respective contractor.
 Design assumes trusses are to be used in a non-corrosive environment,

and are for "dry condition" of use.

6. Design assumes full bearing at all supports shown. Shim or wedge if

 Design assumes adequate drainage is provided.
 Plates shall be located on both faces of truss, and placed so their center lines coincide with joint center lines.

 Digits indicate size of plate in inches.
 For basic connector plate design values see ESR-2529 (CompuTrus) and/or ESR-1311, ESR-1988 (MITek).

BEARING REQUIRED BRG LENGTH MAX HORZ BRG LOCATIONS REACTIONS REACTIONS SIZE INCHES (SPECIES) 1'- 8.5" 1607V 186/ 188H 3.50" 1.71 35' - 4.5" 1476V -186/ 188H 3.50" 1.74

BRG @ 1'- 8.5" 1.55 DF/ 2.39 HF/ 2.28 SPF BRG @ 35'- 4.5" 1.57 DF/ 2.43 HF/ 2.31 SPF

MAX LL DEFL = -0.012* (L/1708) @ 0'- 0.0* L/120 = 0.171* MAX TL DEFL = -0.014* (L/1464) @ 0'- 0.0* L/90 = 0.228* MAX LL DEFL = 0.120* (L/308) @ 18'- 6.5* L/240 = 1.654* MAX TL DEFL = -0.181* (L/2193) @ 18'- 6.5* L/240 = 2.206*

MAX HORIZ. LL DEFL = -0.055" @ 35'- 1.0" MAX HORIZ. TL DEFL = 0.084" @ 35'- 1.0"

Design conforms to main windforce-resisting system and components and cladding criteria.

Wind: 100 mph, h=15ft, TCDL=6.0, BCDL=6.0, ASCE 7-05, Enclosed, Cat.2, Exp.B, MWFRS, gable end zone, load duration factor=1.6

Max CSI: TC:0.68 BC:0.74 Web:1.00

Design checked for a 300 lb concentrated top chord live load per IBC 2006 due to maintenance workers which is non-concurrent with other live loads.

The accuracy of this Truss Design Drawing relies upon accurate: 1.Metal plate connector design values as published by the plate connector manufacturer.

02-07

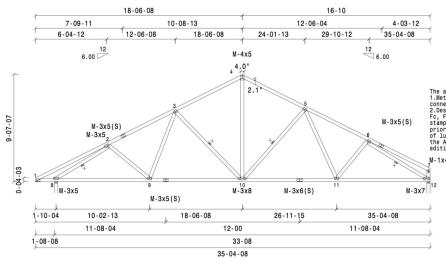
connector manufacturer.

2. Design values for solid sawn lumber. Design values (E, Emin, Fb, Fc, Foperp, Ft, and Fv) for solid sawn lumber and approved, grade stamped, finger jointed lumber shall be defined by the grade stamp prior to cross cutting and in accordance with the published values of lumber rules writing agencies approved by the Board of Review of the American Lumber Standards Committee in accordance with the latest edition of ANSI/TPI 1 section 6.3.

LUMBER SPECIFICATIONS 2x4 SP #2 2x4 SP #2 WEBS: 2x4 SP #3

TC LATERAL SUPPORT 24"OC. UON. BC LATERAL SUPPORT 24"OC. UON.

Unbalanced live loads have been considered for this design.


Connector plates provided by MiTek.

TRUSS SPAN 35'- 4.5" LOAD DURATION INCREASE = 1.25 SPACED 24.0" O.C.

LL(20.0)+DL(10.0) ON TOP CHORD = 30.0 PSF DL ON BOTTOM CHORD = 10.0 PSF TOTAL LOAD = 40.0 PSF

BOTTOM CHORD CHECKED FOR A 20 PSF LIMITED STORAGE LIVE LOAD AT LOCATION(S) SPECIFIED BY IBC 2006. THE BOTTOM CHORD DEAD LOAD IS A MINIMUM OF 10 PSF.

+ Web Member 2x4 Continuous Lateral Restraint (CLR) with Diagonal Bracing (DB) or 2x_ Reinforcement Required. Refer to BCSI-B3 for attachment and additional information, or as specified by the Building Designer.

JOB NAME: 9441 - MEADOW BROOK - T-10

Truss: T-10

DES. BY: Jason0 DATE: 11/15/2010 SEQ.: T-10

TRANS ID: 9441

- 1. Builder and erection contractor should be advised of all General Notes and Warnings before construction commences.
- 2. 2x4 compression web bracing must be installed where shown + 3. All lateral force resisting elements such as temporary and permanent
- stability bracing must be designed by designer of complete structure. CompuTrus assumes no responsibility for such bracing.
- 4. No load should be applied to any component until after all bracing and fasteners are complete and at no time should any loads greater than design loads be applied to any component.
- 5. CompuTrus has no control over and assumes no responsibility for the fabrication, handling, shipment and installation of components. 6. This design is furnished subject to the limitations set forth by TPI/WTCA in BCSI, copies of which will be furnished upon request.
- CompuTrus, Inc. Software +7.5.3.1F(1L)-E

GENERAL NOTES, unless otherwise noted

- 1. This truss design is adequate for the design parameters shown. Review and approval is the responsibility of the building designer, not the truss designer or truss engineer
- Design assumes the top and bottom chords to be laterally braced at 2' o.c. and at 10' o.c. respectively unless braced throughout their length by continuous sheathing such as plywood sheathing(TC) and/or drywall(BC).
- 2x Impact bridging or lateral bracing required where shown + +
 Installation of truss is the responsibility of the respective contractor. 5. Design assumes trusses are to be used in a non-corrosive environment
- and are for "dry condition" of use Design assumes full bearing at all supports shown. Shim or wedge if Design assumes adequate drainage is provided. Plates shall be located on both faces of truss, and placed so their center
- lines coincide with joint center lines. Digits indicate size of plate in inches. To Postic connector plate design values see ESR-2529 (CompuTrus) and/or ESR-1311, ESR-1988 (MITek).

- IBC 2006 MAX MEMBER FORCES 4WR/DSP/Cq=1.00 PPM -483) 353 1-8=(-221) 355 8-2=(-2495) 1346 11-6=(-94) 111 1 - 2=(-483) 353 1 - 8= -221) 355 8 - 2=(-2 - 3=(-2119) 821 8 - 9=(-697) 1814 2 - 9=(3 - 4=(-1617) 715 9 -10=(-670) 1738 9 - 3=(4 - 5=(-1611) 712 10-11=(-673) 1711 3-10=(5 - 6=(-2109) 829 11-12=(-719) 1817 10-4=(2- 9=(-87) 9- 3=(0) 110 6-12=(-2250) 948 292 12- 7=(-144) 165 -544) 212 10 - 4=(-232) 1074 6- 7=(-89) 134 10 - 5=(-533) 5-11=(0) 311
- BEARING REQUIRED BRG LENGTH MAX HORZ BRG LOCATIONS REACTIONS REACTIONS SIZE INCHES (SPECIES) 1'- 8.5" 1607V 186/ 188H 3.50" 1.71 35' - 4.5" 1476V -186/ 188H 3.50" 1.74
- - BRG @ 1'- 8.5" 1.55 DF/ 2.39 HF/ 2.28 SPF BRG @ 35'- 4.5" 1.57 DF/ 2.43 HF/ 2.31 SPF
 - MAX LL DEFL = -0.012* (L/1708) @ 0'. 0.0* L/120 = 0.171* MAX TL DEFL = -0.014* (L/1464) @ 0'. 0.0* L/90 = 0.228* MAX LL DEFL = 0.120* (L/3308) @ 18'- 6.5* L/240 = 1.654* MAX TL DEFL = -0.181" (L/2193) @ 18'- 6.5" L/180 = 2.206"
 - MAX HORIZ. LL DEFL = -0.055" @ 35'- 1.0" MAX HORIZ. TL DEFL = 0.084" @ 35'- 1.0"
 - Design conforms to main windforce-resisting system and components and cladding criteria.
 - Wind: 100 mph, h=15ft, TCDL=6.0, BCDL=6.0, ASCE 7-05, Enclosed, Cat.2, Exp.B, MWFRS
 - gable end zone, load duration factor=1.6
 - Max CSI: TC:0.68 BC:0.74 Web:1.00
 - Design checked for a 300 lb concentrated top chord live load per IBC 2006 due to maintenance workers which is non-concurrent with other live loads.

The accuracy of this Truss Design Drawing relies upon accurate: 1.Metal plate connector design values as published by the plate connector manufacturer.

> 07 05-

Scale: 0.1691

2.Design values for solid sawn lumber. Design values (E, Emin, Fb, Fc, Fcperp, Ft, and Fv) for solid sawn lumber and approved, grade stamped, finger jointed lumber shall be defined by the grade stamp prior to cross cutting and in accordance with the published values of lumber rules writing agencies approved by the Board of Review of the American Lumber Standards Committee in accordance with the latest edition of ANSI/TPI 1 section 6.3.

TRUSS SPAN 35'- 4.5" LOAD DURATION INCREASE = 1.25 SPACED 24.0" O.C.

SOUTHERN PINE REFERENCE DESIGN VALUES

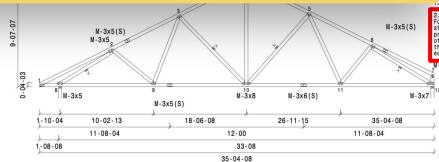

Based on SPIB Grading Rules and AWC National Design Specification® Values in pounds per square inch (psi)

Table 1 Dimension Lumber – 2" to 4" thick, 2" and wider

Effective June 1, 2013

Size NEW		Grade	Bending F _b	Tension Parallel to Grain F _t	Shear Parallel to Grain F _v	Compression Perpendicular to Grain F _C _	Compression Parallel to Grain F _c	Modi oi Elasi E	f
DESIGN VALUES	2" to 4" thick,	Dense Select Structural Select Structural Non-Dense Select Structural	2700 2350 2050	1900 1650 1450	175 175 175	660 565 480	2050 1900 1800	1,900,000 1,800,000 1,600,000	690,000 660,000 580,000
	2" to 4" wide	No.1 Dense No.1 No.1 Non-Dense	1650 1500 1300	1100 1000 875	175 175 175	660 565 480	1750 1650 1550	1,800,000 1,600,000 1,400,000	660,000 580,000 510,000
3	Includes: 2x2 2x3	No.2 Dense No.2. No.2 Non-Dense	1200 1100 1050	750 675 600	175 175 175	660 565 480	1500 1450 1450	1,600,000 1,400,000 1,300,000	580,000 510,000 470,000
	2x4	No.3 and Stud	650	400	175	565	850	1,300,000	470,000

Based on Normal Load Duration and Dry Service (MC≤19%) — See Tables A-1 thru A-4 for Adjustment Factors

JOB NAME: 9441 - MEADOW BROOK - T-10

Truss: T-10

DES. BY: Jacon

SEQ.: 1-10

DATE: 11/15/2010

TRANS ID: 9441

1. Builder and erection contractor should be advised of all General Notes and Warnings before construction commences.

2. 2x4 compression web bracing must be installed where shown +. 3. All lateral force resisting elements such as temporary and permanent

stability bracing must be designed by designer of complete structure. CompuTrus assumes no responsibility for such bracing. 4. No load should be applied to any component until after all bracing and fasteners are complete and at no time should any loads greater than design loads be applied to any component.

5. CompuTrus has no control over and assumes no responsibility for the fabrication, handling, shipment and installation of components. 6. This design is furnished subject to the limitations set forth by TPI/WTCA in BCSI, copies of which will be furnished upon request.

CompuTrus, Inc. Software +7.5.3.1F(1L)-E

GENERAL NOTES, unless otherwise noted:

lines coincide with joint center lines.

This truss design is adequate for the design parameters shown. Review and approval is the responsibility of the building designer, not the truss designer or truss engineer

 Design assumes the top and bottom chords to be laterally braced at 2' o.c. and at 10' o.c. respectively unless braced throughout their length by continuous sheathing such as plywood sheathing(TC) and/or drywall(BC). 2x Impact bridging or lateral bracing required where shown + +
 Installation of truss is the responsibility of the respective contractor. Design assumes trusses are to be used in a non-corrosive environment

and are for "dry condition" of use Design assumes full bearing at all supports shown. Shim or wedge if

Design assumes adequate drainage is provided. Plates shall be located on both faces of truss, and placed so their center

Digits indicate size of plate in inches. To Postic connector plate design values see ESR-2529 (CompuTrus) and/or ESR-1311, ESR-1988 (MITek).

IBC 2006 MAX MEMBER FORCES 4WR/DSP/Cq=1.00 PPM 1. 2=(-483) 333 1 8-2-(21) 355 8-2=(-2495) 1346 11-8=(-94) 111 2. 3=(-2119) 821 8-9-(-957) 1814 2-9=(-87) 110 6-12=(-2250) 948 3-4=(-167) 775 9-10=(-767) 1738 9-3=(-0) 292 12-7=(-144) 165 4-5=(-1611) 712 10-11=(-673) 1711 3-10=(-544) 212 5-5=(-2109) 829 11-12=(-719) 1817 10-4=(-232) 1074 6- 7=(-89) 134 10 - 5 = (-533) 229 5 - 11 = (0) 311

BEARING	MAX VERT	MAX HORZ	BRG	REQUIRED BRG LENGTH
LOCATIONS	REACTIONS	REACTIONS	SIZE	INCHES (SPECIES)
1'- 8.5" 35'- 4.5"	-141/ 1607V -133/ 1476V	-186/ 188H -186/ 188H	3.50"	

BRG @ 1'- 8.5" 1.55 DF/ 2.39 HF/ 2.28 SPF BRG @ 35'- 4.5" 1.57 DF/ 2.43 HF/ 2.31 SPF

MAX LL DEFL = -0.012* (L/1708) @ 0'. 0.0* L/120 = 0.171* MAX TL DEFL = -0.014* (L/1464) @ 0'. 0.0* L/90 = 0.228* MAX LL DEFL = 0.120* (L/3308) @ 18'- 6.5* L/240 = 1.654* MAX TL DEFL = -0.181" (L/2193) @ 18'- 6.5" L/180 = 2.206"

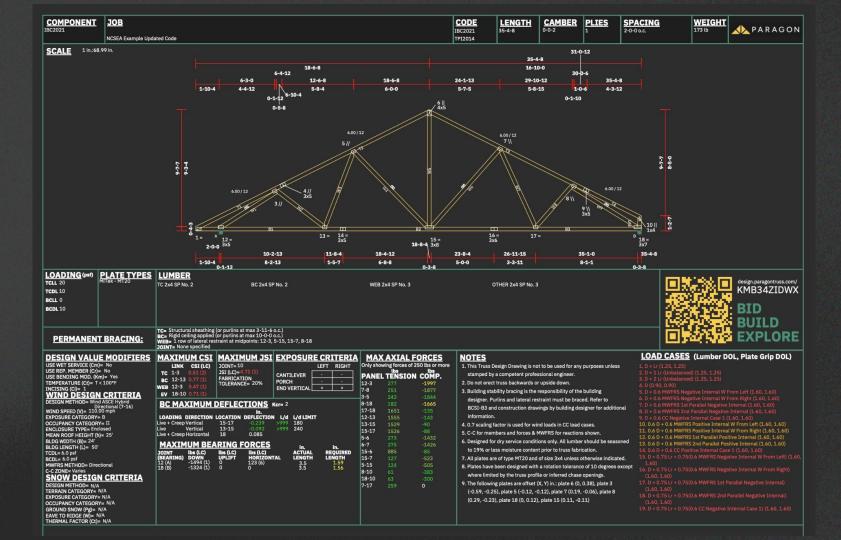
MAX HORIZ. LL DEFL = -0.055" @ 35'- 1.0" MAX HORIZ. TL DEFL = 0.084" @ 35'- 1.0"

Design conforms to main windforce-resisting system and components and cladding criteria.

Wind: 100 mph, h=15ft, TCDL=6.0, BCDL=6.0, ASCE 7-05,

Enclosed, Cat.2, Exp.B, MWFRS, gable end zone, load duration factor=1.6

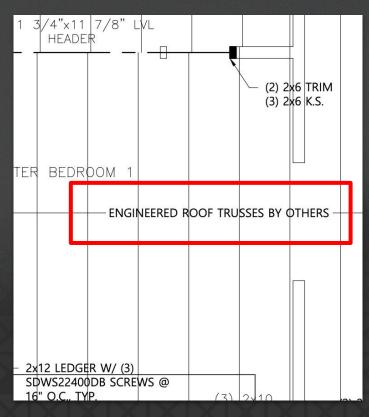
Max CSI: TC:0.68 BC:0.74 Web:1.00

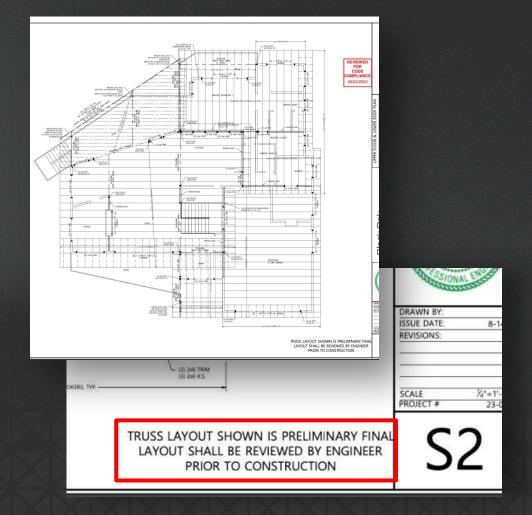

Design checked for a 300 lb concentrated top chord live load per IBC 2006 due to maintenance workers which is non-concurrent with other live loads.

he accuracy of this Truss Design Drawing relies upon accurate: .Metal plate connector design values as published by the plate

2.Design values for solid sawn lumber. Design values (E, Emin, Fb, Fc, Fcperp, Ft, and Fv) for solid sawn lumber and approved, grade stamped, finger jointed lumber shall be defined by the grade stamp prior to cross cutting and in accordance with the published values of lumber rules writing agencies approved by the Board of Review of the American Lumber Standards Committee in accordance with the latest edition of ANSI/TPI 1 section 6.3.

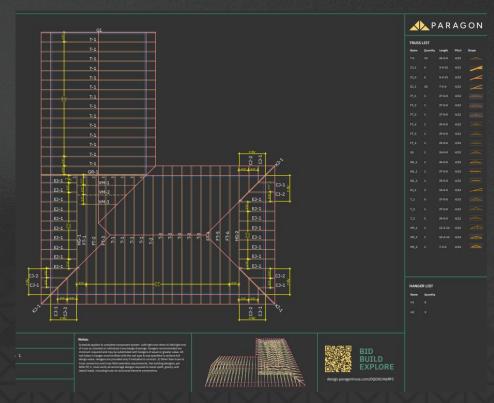
07 05-


Scale: 0.1691



Designer

Evaluating Truss Design Feasibility for New Construction Projects


Typical Process: Delegated Design

As a Designer, use Paragon to:


- Evaluate Conceptual Structural Questions
- Design Uplift Connections
- Coordinate MEP
- Communicate Design Intent

Designer (Bonus!)

Value Engineering
Truss Designs

Use Generative Artificial Intelligence to explore Feasibility and Tradeoffs

Conclusion

Conclusion

Structural Engineers have hard jobs

Paragon can make them easier when it comes to Wood Trusses

Doctor

Detective

Designer

Sign up for a free account today.

If you have any additional questions feel free to email us at info@paragontruss.com.

paragontruss.com/engineers