
Advanced Programming in
Python

Lecture 11:
The rest of Python

Chalmers/GU CSE (DAT515/DIT515)
Version 20231128

Aarne Ranta
1

Plan
One of the goals of this course is to cover all of Python, at least in the reading mode.

This lecture will cover the rest of Python constructs, some quite new, some older:

- :=
- match
- yield
- & | ^ ~
- x: int
- raise
- re
- async

None of these is necessary in the labs, and they will not be asked in the exam!

https://docs.python.org/3/reference/grammar.html
2

https://docs.python.org/3/reference/grammar.html

:=

3

Assignment expression x := e

4

https://upload.wikimedia
.org/wikipedia/common
s/8/8f/Walrus_2_%2863
83855895%29.jpg

Using the "walrus symbol" :=
- returns the value of e
- assigns it to variable x

In many other languages (C, Java, …) ordinary assignments x = e
do the same. Hence they are expressions, not just statements.

But Python forbids this to avoid unwanted errors, such as

if x = 42:
 print(x) # always prints 42

This is a syntax error, because x = 42 is a statement.

https://peps.python.org/pep-0572/

https://upload.wikimedia.org/wikipedia/commons/8/8f/Walrus_2_%286383855895%29.jpg
https://upload.wikimedia.org/wikipedia/commons/8/8f/Walrus_2_%286383855895%29.jpg
https://upload.wikimedia.org/wikipedia/commons/8/8f/Walrus_2_%286383855895%29.jpg
https://upload.wikimedia.org/wikipedia/commons/8/8f/Walrus_2_%286383855895%29.jpg
https://peps.python.org/pep-0572/

The three equality signs: = == :=

5

x = 7

x == 42

if x == 42:
 print(x)

if x := 42:
 print(x)

if x := 0:
 print(x)

Assignment statement, sets the value of x to 7

Equality expression, value False

Nothing is printed, because x is 7

Prints 42, sets the value of x to 42

Quiz: what is printed here?

match

6

Pattern matching: match and case

7

def http_error(status):
 match status:
 case 400:
 return "Bad request"
 case 404:
 return "Not found"
 case 418:
 return "I'm a teapot"
 case 200|201|202:
 return "Some kind of success"
 case x if 300 <= x < 400:
 return "Some kind of redirection"
 case _:
 return "Something's wrong with the Internet"

Matching with integers

disjunctive patterns

if conditions to patterns

matching anything not yet covered

Could be mimicked with an if-elif-else
block but would be more complicated.
https://peps.python.org/pep-0636/

https://peps.python.org/pep-0636/

Matching lists

8

while True:
 command = input('> ')

 match command.split():
 case ['reverse', s]:
 print(s[-1::-1])
 case ['reverse', *s]:
 print('cannot reverse multiple words')
 case ['echo', *s]:
 print(*s)
 case ['quit'|'bye']:
 print('bye')
 break
 case _:
 print('try again')

A dialogue interpreter; cf. Lab 1.

Testing with different sequences of
words

- Just one word: reverse
- Many words, cannot reverse
- Many words: just print

- quit or bye: quit the dialogue

- any other input: invalid

Also other structures can be matched,
including objects of your own classes.

yield

9

Generators: yield and next

10

def fibonacci():
 lo, hi = 1, 1
 while True:
 yield lo
 lo, hi = hi, lo+hi

fs = fibonacci()
while not input():
 print(next(fs), end='')

This generates an "infinite" list of
Fibonacci numbers

- instead of building a list with
append() and returning it

To test: get one number at the time,
the next one, by pressing just enter.
Any other input terminates.

Common use: reading large files line
by line (this is what standard open()
actually does)

https://realpython.com/introduction-to-
python-generators/

https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

& | ^ ~

11

Binary numbers and bitwise operators

12

x = 0b101010

int(x) # == 42

bin(42) # == '0b101010'

20 & 10 # == 0b10100 & 0b1010 == 0b0

20 | 10 # == 0b11110 == 30

20 ^ 10 # == 0b11110 == 30

~ 20 # -21

Literals for binary numbers

value shown as decimal (= base 10)

converted to binary

bitwise and (x * y)

bitwise or (x + y)

bitwise xor (x + y mod 2)

bitwise negation (1 - x)

https://realpython.com/python-bitwise-
operators/

https://realpython.com/python-bitwise-operators/
https://realpython.com/python-bitwise-operators/

x: int

13

Type hints
Good for documenting functions in an API.
Also used in static type checking

- not native in Python
- but performed by preprocessing

- with mypy
- in pycharm, built in as warnings

https://docs.python.org/3/library/typing.html

Normal execution: the first error found when
running the code is reported

With static type checking: all errors found are
reported before running the code

https://realpython.com/python-type-checking/
14

def greeting(name: str, n: int) -> str:
 return n * 'Hello ' + name

a violation
print(greeting('world', '3'))

$ python3 lecture11.py
TypeError: can't multiply sequence by
non-int of type 'str'

$ mypy lecture11.py
lecture11.py:59: error: Argument 2 to
"greeting" has incompatible type "str";
expected "int" [arg-type]
Found 1 error in 1 file (checked 1 source
file)

https://docs.python.org/3/library/typing.html
https://realpython.com/python-type-checking/

raise

15

Defining and raising exceptions

16

class AsciiException(Exception):
 def __str__(self):
 return 'non-ascii characters in string'

def get_username():
 name = input('username: ')
 if any([ord(c) > 127 for c in name]):
 raise AsciiException
 return name

A user-defined exception is a subclass
of the Exception class.

- the __str__() method defines the
error message

To make the execution with a certain
exception, raise it.

https://docs.python.org/3/tutorial/errors
.html

Defining and raising meaningful
exceptions is better than returning
error strings or None values.

Other functions can then catch them in
try-except blocks.

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

re

17

Regular expressions

18

import re

re.match('\d+', '123abc')
<re.Match object; span=(0, 3), match='123'>

Inherited from the Perl language,
reflecting the origin of Python as a
scripting language.
https://docs.python.org/3/howto/regex.ht
ml#regex-howto
https://docs.python.org/3/library/re.html

re.match(<pattern>, <str>) matches in
the beginning
re.search(...) returns the first match
re.findall(...) returns a list of all matches
re.finditer(...) yields all matches

https://docs.python.org/3/howto/regex.html#regex-howto
https://docs.python.org/3/howto/regex.html#regex-howto
https://docs.python.org/3/library/re.html

async

19

Asynchronous IO

20

import asyncio

async def hello(i):
 print(f"hello {i} started")
 await asyncio.sleep(4)
 print(f"hello {i} done")

async def main():
 task1 = asyncio.create_task(hello(1))
 await asyncio.sleep(3)
 task2 = asyncio.create_task(hello(2))
 await task1
 await task2

asyncio.run(main())

Asynchronous programs: tasks
running at the same time without
blocking each other

https://docs.python.org/3/library/asyncio.
html

Simple example from

https://stackoverflow.com/questions/507
57497/simplest-async-await-example-po
ssible-in-python

Much more in

https://realpython.com/async-io-python/

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://stackoverflow.com/questions/50757497/simplest-async-await-example-possible-in-python
https://stackoverflow.com/questions/50757497/simplest-async-await-example-possible-in-python
https://stackoverflow.com/questions/50757497/simplest-async-await-example-possible-in-python
https://realpython.com/async-io-python/

