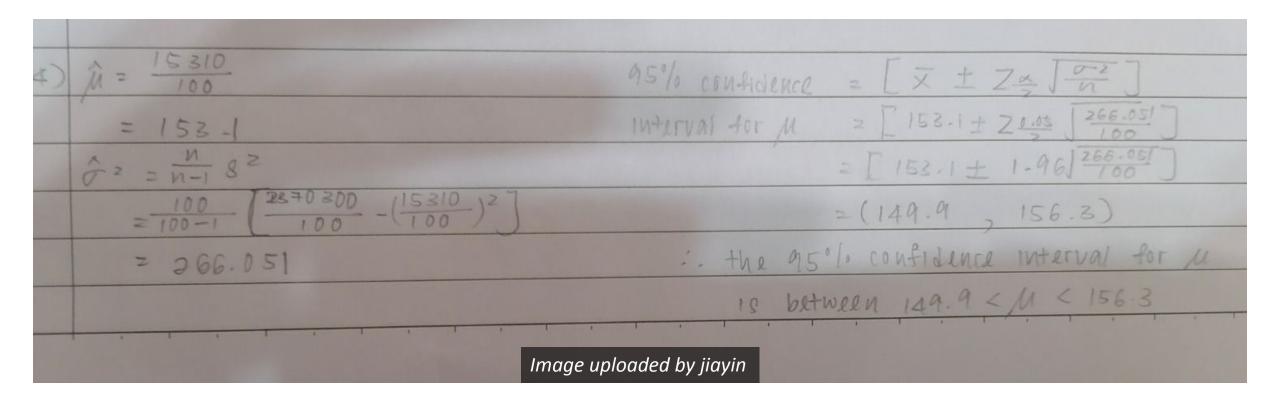
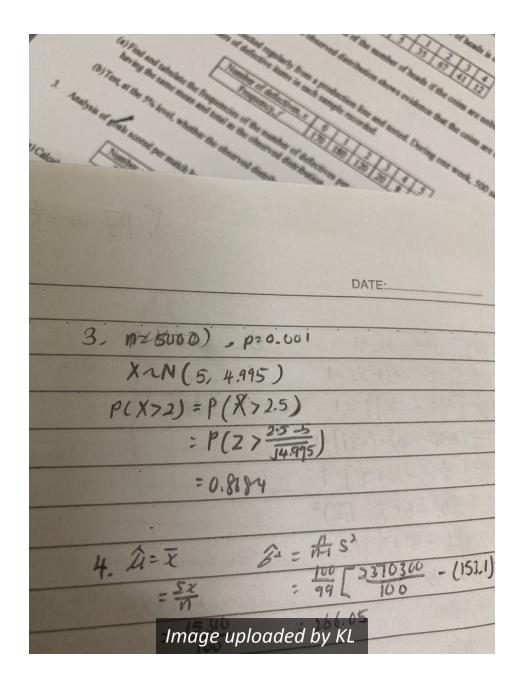
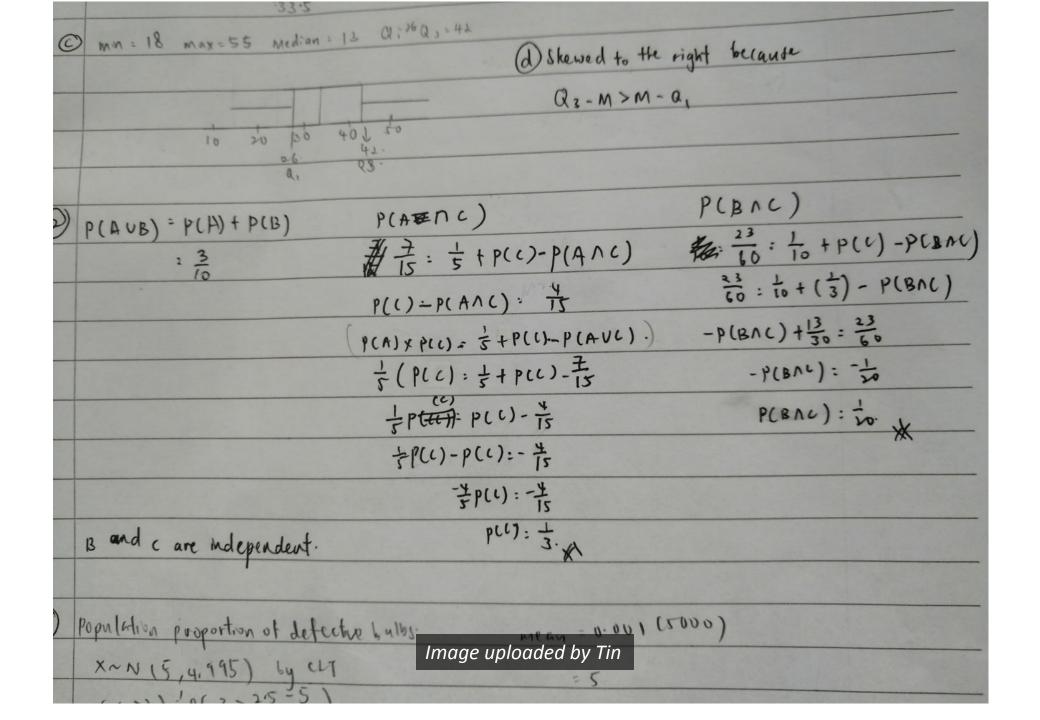


	a state of the state		No.	Date
2	P(AVB) = P(AHP(B)	P(AAC) = P(A) × P(C)	P (BAC) = P	(B)XP(()
~	$=\frac{1}{5}\pm\frac{1}{10}$	p(AUC)= p(A) + pcc) - pcA)pcc)	- 2	$(B) + P(L) - P(B \cap L)$
	3	$\frac{7}{15} = \frac{1}{5} + P(c) - \frac{1}{5}P(c)$	$\frac{23}{60} = \frac{1}{10}$	+ P(BAC)
	10	生p(c)= 法	P(BAC) =	1.
-		$P(c) = \frac{1}{3}$		
	₽£		2.2.2.9	
	$P(B)P(c) = \frac{1}{30}$	2/2 1 9.55		1 1 2 3 3
		nc) + P(B) P(C) events B and Ca Image uploaded by Celine	re not independ	lent.


a)	Stem	Leaf	LF= 26-1.5(19) = -2.5
	1	8 8	UF: 45+15(10) - 72 F
	ı	0 156	6 9
	3	1 2 2	3.4 5
1	4	01 23	57
	5	15	
	viderau with		kay: 511 means
b)	$r = \frac{26}{2} =$	13	51
	median	= N13 + K14	Q1: (= 4 × 26 = 6.5 2375
	and the second s	2	X[1] = 26
		= 33+34	$Q_3: T = \frac{3}{4} \times 26 = 19.5$
		2	x[20]= 45
		= 33.5	10R: Q3-Q1= 45-26= 19
(c)		
		++++	50 60 10
	10	20 30 40	50 60 10
			11 F
	a) Q3-Q2	= 45 - 33.5 =	- 15
	Q2- Q	1 = 33.5-26	
	since	Q2-Q1 <	on is negatively slawed
	th	e distributi	Advanced
		Imag	e uploaded by En Qi


www. WZU. 6) H: There is no assarting hangen taylish and Mathematy; results. 11. There is I association bornen English ad millemotics (Q'-E) X2=8.564 U=4 Di E, 21.105 0.748 17 0.056. 28 26-775 X (4) = 9.488 15.12. 0. 549 18 It y 2 > 9.4188 , HO is rejected 33.165 0.705 38 0.203 42.075 45 2.534 XZ = 8.564 2 TI 488, Ho is not referrer. 16 23-76 There is 1-sufficient entere of 5% symbol 0-042 12 12.73 level of there is assume better E. -1.066. 12 16.15. ruchs 0112 2-611 14 Image uploaded by ...


$\frac{1}{1} \int_{-\infty}^{1} \int_{-\infty}^{1} \frac{1}{2\pi} \frac{1}{2\pi$	-	NO
$\frac{1}{1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty} $		(A) Date
$\begin{bmatrix} (n-1)^{\frac{1}{2}} \\ \frac{3}{3} \end{bmatrix}_{1}^{n} = 5\pi^{2}$ $\frac{3}{3} [(b-1)]^{\frac{1}{2}} + 2\pi^{3}$ $b \ge \frac{1}{4}$ $f(u) = \int_{1}^{\frac{1}{2}} \int$	٢	$\int \int \frac{h}{h} dh = 1$
		[(n-1) ^a] ^b
		3 512
		$\frac{2}{3}[(b-1)]^{\frac{1}{2}} = 2\sqrt{3}$
$(b) b = 4$ $f(u) = \int_{-\infty}^{1/2} \int_{-\infty}^{1/$	1	bzy
$ \frac{f(u): \int_{-\infty}^{u-1} \int_{-\infty}^{u} Susq}{0} $ For $u < 1$ For $u < 1$ For $u > 1$ For $u = 1$ For $u =$		
For $u < 1$ $T_{(w)} > P(x \le u) : \int_{-\infty}^{u} 0 du$ $T_{(w)} : P(x \le u) : \int_{-\infty}^{u} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} du + \int \frac{1}{2} \frac{1}{2} Humpy}{1 + 0}$ = 0 $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2$		
For $u < 1$ $T_{(w)} > P(x \le u) : \int_{-\infty}^{u} 0 du$ $T_{(w)} : P(x \le u) : \int_{-\infty}^{u} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} du + \int \frac{1}{2} \frac{1}{2} Humpy}{1 + 0}$ = 0 $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2\pi e} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2\pi e} \int \frac{1}{2} (u - 1)^{\frac{1}{2}} du + 0$ $: \frac{1}{2$		$f(u): \int \frac{Ju-1}{12}$, $1 \le u \le q$
$\frac{1}{10000000000000000000000000000000000$		
$=0 = \frac{1}{3\pi} \int_{1}^{\mu} (u-1)^{\frac{1}{2}} du + 0$ $= \frac{1}{3\pi} \int_{1}^{\mu} (u-1)^{\frac{1}{2}} du + 0$ $= \frac{1}{3\pi} \int_{1}^{\mu} (u-1)^{\frac{1}{2}} du$ $= \frac{1}{3\pi} \int_{1}^{\pi} (u+1)^{\frac{1}{2}} du$ $= \frac{1}{3\pi} \int_{0}^{\pi} (u^{\frac{1}{2}} + u^{\frac{1}{2}}) du$		10, 1.2
$F(n) = f(x \le h) = 0 + \int_{1}^{n} \int_{\frac{h}{2}}^{\frac{h}{2}} du \qquad > 1$ $= \frac{1}{175} \int_{1}^{n} (u + 1)^{\frac{h}{2}} du$ $= \frac{1}{175} \left(\frac{(u + \frac{h}{2})^{\frac{h}{2}}}{1} \right)_{1}^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}} = 1 \le u \le 4$ $f(u) = \int_{1}^{u} u P(x + u)$ $= \int_{1}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{\frac{h}{2}}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$		$F(u) = P(x \le u) = \int_{ab}^{a} 0 du \qquad F(u) = P(x \le u) = \int_{a}^{a} \int_{a}^{b-1} du + \int_{a}^{a} f(u) du$
$F(n) = f(x \le h) = 0 + \int_{1}^{n} \int_{\frac{h}{2}}^{\frac{h}{2}} du \qquad > 1$ $= \frac{1}{175} \int_{1}^{n} (u + 1)^{\frac{h}{2}} du$ $= \frac{1}{175} \left(\frac{(u + \frac{h}{2})^{\frac{h}{2}}}{1} \right)_{1}^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}} = 1 \le u \le 4$ $f(u) = \int_{1}^{u} u P(x + u)$ $= \int_{1}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{\frac{h}{2}}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$		$= 0 = \frac{1}{\sqrt{12}} \int_{-1}^{1} \frac{(n-1)^2}{(n-1)^2} dn + 0$
$F(n) = f(x \le h) = 0 + \int_{1}^{n} \int_{\frac{h}{2}}^{\frac{h}{2}} du \qquad > 1$ $= \frac{1}{175} \int_{1}^{n} (u + 1)^{\frac{h}{2}} du$ $= \frac{1}{175} \left(\frac{(u + \frac{h}{2})^{\frac{h}{2}}}{1} \right)_{1}^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}}$ $= \frac{1}{373} (u + 1)^{\frac{h}{2}} = 1 \le u \le 4$ $f(u) = \int_{1}^{u} u P(x + u)$ $= \int_{1}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{u} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{1}^{u} \int_{0}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$ $= \int_{\frac{h}{2}}^{\frac{h}{2}} (u + 1) \int_{\frac{h}{2}}^{\frac{h}{2}} du$		$= \frac{1}{T_{12}} \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$
$= \frac{1}{172} \int_{1}^{4} (\frac{(n-1)^{\frac{1}{2}}}{2} d_{1}^{\frac{n}{2}}$ $= \frac{1}{172} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{172} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{12} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}} + \frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}} + \frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{12} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{12} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}} + \frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{12} \left(\frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}} + \frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$ $= \frac{1}{12} \left(\frac{(n-1)^{\frac{1}{2}}}{2} + \frac{(n-1)^{\frac{1}{2}}}{2} + \frac{(n-1)^{\frac{1}{2}}}{2} \right)_{1}^{\frac{n}{2}}$		For 1 and 1
$\frac{1}{F(n)} = \begin{cases} 0 & , n < 1 \\ \frac{1}{5T_{5}} (n-1)^{\frac{1}{2}} & , 1 \le n < 4 \\ 1 & , n \ge 4 \\ \end{cases}$ $\frac{1}{(c_{1}) E(x)} = \int_{1}^{u} n P(x \ge n) \\ 0 & \int_{1}^{u} n \int_{1}^{n-1} a_{1} a_{1} \\ n \ge 4 \\ n \ge 2 \\ n $		$F(n) \ge F(x \ge n) \ge 0 + j, j = j$
$\frac{1}{F(n)} = \begin{cases} 0 & , n < 1 \\ \frac{1}{5T_{5}} (n-1)^{\frac{1}{2}} & , 1 \le n < 4 \\ 1 & , n \ge 4 \\ \end{cases}$ $\frac{1}{(c_{1}) E(x)} = \int_{1}^{u} n P(x \ge n) \\ 0 & \int_{1}^{u} n \int_{1}^{n-1} a_{1} a_{1} \\ n \ge 4 \\ n \ge 2 \\ n $		5 J12 J 1 (N-1)-019
$\frac{1}{F(n)} = \begin{cases} 0 & , n < 1 \\ \frac{1}{5T_{5}} (n-1)^{\frac{1}{2}} & , 1 \le n < 4 \\ 1 & , n \ge 4 \\ \end{cases}$ $\frac{1}{(c_{1}) E(x)} = \int_{1}^{u} n P(x \ge n) \\ 0 & \int_{1}^{u} n \int_{1}^{n-1} a_{1} a_{1} \\ n \ge 4 \\ n \ge 2 \\ n $		$= \frac{1}{\Pi_2} \left(\frac{1}{2} \right) $
$(\zeta) \mathcal{E}(x) = \int_{-1}^{u} n P(x \ge n)$ $\int_{-1}^{u} n \int_{\overline{T_{n}}}^{\overline{T_{n}}} a_{n}$ $h \ge n-1 \qquad h \ge 1, n \ge 0$ $a_{n} = d_{n} \qquad n \ge 4, n \ge 3$ $= \int_{0}^{d} (n \pm 1) \int_{\overline{T_{n}}}^{\overline{T_{n}}} d_{n}$ $= \int_{\overline{T_{n}}}^{d} \int_{0}^{d} (n^{\frac{1}{2}} + n^{\frac{1}{2}}) dy$ $= \int_{\overline{T_{n}}}^{d} (\frac{1}{2} + n^{\frac{1}{2}}) dy$		· 3.13 · · · · · ·
$(\zeta) \mathcal{E}(x) = \int_{-1}^{u} n P(x \ge n)$ $\int_{-1}^{u} n \int_{\overline{T_{n}}}^{\overline{T_{n}}} a_{n}$ $h \ge n-1 \qquad h \ge 1, n \ge 0$ $a_{n} = d_{n} \qquad n \ge 4, n \ge 3$ $= \int_{0}^{d} (n \pm 1) \int_{\overline{T_{n}}}^{\overline{T_{n}}} d_{n}$ $= \int_{\overline{T_{n}}}^{d} \int_{0}^{d} (n^{\frac{1}{2}} + n^{\frac{1}{2}}) dy$ $= \int_{\overline{T_{n}}}^{d} (\frac{1}{2} + n^{\frac{1}{2}}) dy$		Γ.Ο . H <i< th=""></i<>
$(\zeta) \mathcal{E}(x) = \int_{-1}^{u} n P(x \ge n)$ $\int_{-1}^{u} n \int_{\overline{T_{n}}}^{\overline{T_{n}}} a_{n}$ $h \ge n-1 \qquad h \ge 1, n \ge 0$ $a_{n} = d_{n} \qquad n \ge 4, n \ge 3$ $= \int_{0}^{d} (n \pm 1) \int_{\overline{T_{n}}}^{\overline{T_{n}}} d_{n}$ $= \int_{\overline{T_{n}}}^{d} \int_{0}^{d} (n^{\frac{1}{2}} + n^{\frac{1}{2}}) dy$ $= \int_{\overline{T_{n}}}^{d} (\frac{1}{2} + n^{\frac{1}{2}}) dy$		$T(u) = \frac{1}{12} (u-1)^{\frac{1}{2}} 1 \le u \le 4$
$(\zeta) \mathcal{E}(x) = \int_{-1}^{u} n P(x \ge n)$ $\int_{-1}^{u} n \int_{\overline{T_{n}}}^{\overline{T_{n}}} a_{n}$ $h \ge n-1 \qquad h \ge 1, n \ge 0$ $a_{n} = d_{n} \qquad n \ge 4, n \ge 3$ $= \int_{0}^{d} (n \pm 1) \int_{\overline{T_{n}}}^{\overline{T_{n}}} d_{n}$ $= \int_{\overline{T_{n}}}^{d} \int_{0}^{d} (n^{\frac{1}{2}} + n^{\frac{1}{2}}) dy$ $= \int_{\overline{T_{n}}}^{d} (\frac{1}{2} + n^{\frac{1}{2}}) dy$	e	r(n), siz (, , , , , , , , , , , , , , , , , ,
$\int \frac{1}{2} h \int \frac{m^{2}}{2} du$ $h = h - 1 h \ge 1, u \ge 0$ $ah = dh h = 4, u = 3$ $= \int \frac{1}{6} (h + 1) \int \frac{1}{12} du$ $= \frac{1}{115} \int \frac{1}{6} (h + \frac{1}{2} + h + \frac{1}{2}) du$ $= \frac{1}{115} \int \frac{1}{6} (h + \frac{1}{2} + h + \frac{1}{2}) \frac{1}{12}$ $= \frac{1}{15} (\frac{1}{5} + \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3})^{5}$ $= 14$ Image uploaded by Chan(- 'p')		
$\int \frac{1}{2} h \int \frac{m^{2}}{2} du$ $h = h - 1 h \ge 1, u \ge 0$ $ah = dh h = 4, u = 3$ $= \int \frac{1}{6} (h + 1) \int \frac{1}{12} du$ $= \frac{1}{115} \int \frac{1}{6} (h + \frac{1}{2} + h + \frac{1}{2}) du$ $= \frac{1}{115} \int \frac{1}{6} (h + \frac{1}{2} + h + \frac{1}{2}) \frac{1}{12}$ $= \frac{1}{15} (\frac{1}{5} + \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3})^{5}$ $= 14$ Image uploaded by Chan(- 'p')		(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	
$= \int_{0}^{1} \frac{(n+1) \int_{1}^{\infty} dn}{(n^{\frac{1}{2}} + n^{\frac{1}{2}}) du}$ $= \frac{1}{11} \int_{0}^{1} \frac{(n^{\frac{1}{2}} + n^{\frac{1}{2}}) du}{(\frac{1}{2} + n^{\frac{1}{2}} + \frac{1}{3} u^{\frac{1}{2}})^{\frac{1}{3}}}$ $= \frac{14}{5}$ Image uploaded by Chan($\frac{1}{2} - \frac{1}{2})^{\frac{1}{2}}$, J h J T au
$= \int_{0}^{1} \frac{(n+1) \int_{1}^{\infty} dn}{(n^{\frac{1}{2}} + n^{\frac{1}{2}}) du}$ $= \frac{1}{11} \int_{0}^{1} \frac{(n^{\frac{1}{2}} + n^{\frac{1}{2}}) du}{(\frac{1}{2} + n^{\frac{1}{2}} + \frac{1}{3} u^{\frac{1}{2}})^{\frac{1}{3}}}$ $= \frac{14}{5}$ Image uploaded by Chan($\frac{1}{2} - \frac{1}{2})^{\frac{1}{2}}$		N=N-1 N21, N30
$= \frac{1}{112} \int_{0}^{1} (\frac{u^{2} + u^{2}}{3}) du$ $= \frac{1}{122} (\frac{1}{3} + \frac{1}{3}) \frac{1}{3}$ $= \frac{14}{5}$ Image uploaded by Chan($\frac{1}{3} - \frac{1}{3})$		olu=du u=4, u=9
= 1生 Image uploaded by Chan('ロ')		
= 1生 Image uploaded by Chan('ロ')		$= \frac{1}{11} \int_{0}^{3} (n^{2} f n^{2}) dy$
= 1生 Image uploaded by Chan('ロ')		= 213 (342+ 342).
Jmage uploaded by Chan(ノ`ロ')ノ		
Image uploaded by Chan('``ם')		5
Image uploaded by $Chan(\mathcal{I} `\Box')^{\mathcal{I}}$		
muge uplouded by chun()		maga unloaded by Charly 'a'l
		mage uploaded by chan(\Box)

Perkara					M
(8) a) Ho: The heigh	t of the stu	dents	could be mode	Iled by a normal	
distributio	n with mea	in 172	and standard	deviation 6	
+11= The heigh	1 of the stu	dunt	could not be n	codelled by a norm	nal
distribution	with mean	n 172	and standard	deviation 6.	
		1	r (4 . 13) . 7	. h 132 \	
Herght (cm), n	01	and the second se	$= P(\frac{\alpha - 172}{6} < 7 < 1)$		
N < 149.5	0		(-3.75) × 200 =		1
149.5 < M < 154.5	4		-75 < 7 < -2.91		1
154.5 < 11<139.5					
159.5 < U < 164.5	12	PL-2.	083 < Z < -1-25,	$1 \times 200 = 17.404$	1
164.5 \$ 21 < 169.5	30	P(-1.	25 < Z < -0.417)	× 200 = 46.538	
			1.417 <z<0-417,< td=""><td>$1 \times 200 = 64.664$</td><td></td></z<0-417,<>	$1 \times 200 = 64.664$	
			417 < Z < 1-25)	x 200 = 46-538	
179.5 < M < 184.5 18 P(1.25 < 7 < 2.083) × 200 =) × 200 = 17.404	7	
184.5 < N<189.5 10 P(2.083 < Z < 2.917) ×					
189.5 & M < 194.5					
NZ194.5	0	P	(3.75) × 200 =	0-018	1
N	1 0ī		Eī	101-E1)2 E1	
n <149.5, 149.5 x n <164.5	22		21-130	0.0342	2
164.5 ± M<169.5			46-538	5-8770	
169.5 ≤ 21<174.5	64		. 64.664	0-00 68	
174.5 \$ 21 × 179.5	52		46.538	0-6411	
21 >, 179.5	32		21.130	3-5919	
		5.00 G	and the second	$\chi^{t} = \sum \frac{(0i - Ei)^{t}}{Ei}$	
Image uploaded by Emily = 12.151					
	nuge up	ouu	eu by Emily	12.13 1	

Test at sil. significance level,	
Test at 5% significance level, degree of freedom, v = 5-1	
= 4	
X \$ 9. (4) = 9.488	
Reject Ho If X > 9.488	
- Since X2= 12-151 >9.488, Ho is rejusted,	
There is sufficient evidence at S1. significance level that the height of the studints could not be moduled	
that the height of the students could not be moduled	
by a normal distribution with mean 172 and standard	l
durtation 6-	
b) If the mean and the standard deviation were unknown,	
need to estimate the mean and variance.	
The estimated mean is 173-15 while the estimated	
VARTUNII B 58-22	
The degree of treedom is calculated by using 5 categories subtract 3 retrictions. (V = 5-3 = 2)	
subtract 3 refrictions. $(V = 5 - 3 = 2)$	
	T
	1
	1
	T
	-
	-
	4
Image uploaded by shuyen	
indge uplodded by shuyen	

	$= \begin{bmatrix} 153 & 10 \pm 1.040 \end{bmatrix} \frac{-66 \cdot 051}{101} \end{bmatrix}$
5	population: X represents the amount of juice X-N(60.3")
	Sample - n = 16 ado 1 2 sears - and a contracto + part a - data
	pe represents mean amount of juice per carton
	$H_0: \mu = G_0$
	Hi : p < 60
	It the To true, then X~N (60, 30)
	(lower tooled tost)
	at the Durd Bran have deligned mendful thether also a restant at the 224 th and the
	the end of the base of the first sector
(citical value = -20.05 0.05
	= -1.645 Ashaper to the market a
	rijut the if 2 < - 1.645 will be it some fine a -1.645
	59.1-60 Hard Education has no port mented as
	$l = \frac{39.1 - 60}{\sqrt{\frac{3^2}{16}}}$
	= -1.2. (g) northand survivitions
	Since 2 = -1.2 > -1.645, Ho is not rejected.
	There is insufficient evidence at 5% significance level to uphoid the complaints
	there is a long the is transferred
	Image uploaded by jiaxuan