Aerial Robotics
State Estimation: Attitude & Heading – Extended Kalman Filter
C. Papachristos
Robotic Workers (RoboWork) Lab
University of Nevada, Reno
CS-491/691
Attitude & Heading Estimation
CS491/691 C. Papachristos
Attitude & Heading Estimation
CS491/691 C. Papachristos
Note: Heading is unobservable by Inertial Sensing alone
Attitude & Heading Estimation
CS491/691 C. Papachristos
Attitude & Heading Estimation
CS491/691 C. Papachristos
or:
Attitude & Heading Estimation
CS491/691 C. Papachristos
Attitude & Heading Estimation
CS491/691 C. Papachristos
Extended Kalman Filtering
Kalman Filtering with Non-Linear Motion / Sensor models
CS491/691 C. Papachristos
Input: Gaussian
Output: �Gaussian
Output: �Non-Gaussian
Input: Gaussian
Extended Kalman Filtering
Kalman Filtering with Non-Linear Motion / Sensor models
CS491/691 C. Papachristos
Input: Gaussian
Output: �Gaussian
Approximate with a Linear Function
Note: In EKF, noise also assumed to follow zero-mean (multivariate) Gaussian
Extended Kalman Filtering
Kalman Filtering with Non-Linear Motion / Sensor models
CS491/691 C. Papachristos
Jacobian (Matrix)
Jacobian (Matrix)
Note:
Given a vector-valued�function:
Jacobian�Matrix�is:
A generalization of the Gradient of a scalar-valued function
Extended Kalman Filtering
Kalman Filtering with Non-Linear Motion / Sensor models
CS491/691 C. Papachristos
Prediction
Correction
Project State Ahead:
Project Error Covariance Ahead:
Update Error Covariance:
Update Estimate with Measurement:
Compute Kalman Gain:
Quaternion-based EKF
CS491/691 C. Papachristos
Hamilton Product
Skew-symmetric
Quaternion-based EKF
CS491/691 C. Papachristos
Full Process Model:�
(closed-form in previous slide)
Quaternion-based EKF
CS491/691 C. Papachristos
Quaternion-based EKF
CS491/691 C. Papachristos
Quaternion-based EKF
CS491/691 C. Papachristos
Quaternion-based EKF
CS491/691 C. Papachristos
Quaternion-based EKF Example
CS491/691 C. Papachristos
Time for Questions !
CS-491/691
CS491/691 C. Papachristos