Inference for two independent means Randomization for the difference in

Randomization for the difference in means

Prof. Dr. Jan Kirenz

Inference for comparing two independent means

- Confidence intervals and hypothesis tests to differences in population means that come from two groups,
 - Group 1 and
 - o Group 2

Randomization test for the difference in means

 An instructor decided to run two slight variations of the same exam: A & B We like to evaluate whether the difference observed in the groups is so large that it provides convincing evidence that Version B was more difficult (on average) than Version A

Difference: 3.1

C	Group	n	Mean	SD	Min	Max
	Α	58	75.1	13.9	44	100
	В	55	72.0	13.8	38	100

Table 20.1: Summary statistics of scores for each exam version.

Boxplot of exam score broken down by version of exam.

Figure 20.1: Exam scores for students given one of three different exams.

Construct hypotheses to evaluate whether the observed difference in sample means, x_A-x_B = 3.1

 Is likely to have happened due to chance, if the null hypothesis is true. We will later evaluate these hypotheses using α=0.01

Technical conditions

- Before moving on to evaluate the hypotheses
- Think carefully about the dataset.
 - Are the observations across the two groups independent?
 - Are there any concerns about outliers?

Figure 20.2: The version of the test (A or B) is randomly allocated to the test scores, under the null assumption that the tests are equally difficult.

1,000 differences in randomized means 200 150 Count 100 50 -10 10 Difference in randomized means (A - B)

Figure 20.3: Histogram of differences in means, calculated from 1,000 different randomizations of the exam types.

1,000 differences in randomized means 200 150 Count 100 50 0 -10 10 Difference in randomized means (A - B)

Figure 20.4: Histogram of differences in means, calculated from 1,000 different randomizations of the exam types. The observed difference of 3.1 points is plotted as a vertical line, and the area more extreme than 3.1 is shaded to represent the p-value.

Resources

The content of this presentation is mainly based on the excellent book "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin (2021).

The online version of the book can be accessed for free:

https://openintro-ims.netlify.app/index.html