高解析雷射光譜及其應用
Special topics course
Lecture speaker: Wang-Yau Cheng
2007/6
大綱
一般名稱 常用單位 常見應用 例
(解析度)
Laser Spectroscopy cm-1 (~30 GHz) 分子振動光譜 化學分析
High Resolution GHz 微波光譜 Lamb Shift
Laser Spectroscopy 拉曼光譜 Four-wave Mixing
Ultra-high Resolution < MHz 超精細光譜 Laser Cooling, BEC
Laser Spectroscopy Hyperfine Structure
Length Standard
量測所使用的工具決定了物理的說法� -- J. S. Schwinger
Concept of Linewidth
Linewidth of light
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser and comb laser
Linewidth of spectrum (The way matter feels light)
🡪 Lorentian linewidth
🡪 Doppler linewidth
🡪 Other linewidthes
Linewidth of light
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser and comb laser
Linewidth from uncertainty principle
(Well, then we don’t need any interpretation since uncertainty anywhere)
Linewidth from phase interrupted
Linewidth from amplitude change
Linewidth from superposition of different frequencies
Linewidth of light
Talk again about frequency?
1.What is perfect wave?
2. What is “frequency”? What is phase?
2. What is “instantaneous frequency”?
3. What is “linewidth”?
Linewidth from phase interrupted
Collisions broaden the frequency range of�light emission.
E(f)
t
E(t)
f
~ 1/a
Linewidth!
Like damping OSC. 🡪 Lorentian
Linewidth from amplitude change
k
nk
E(x,t) = E
0
exp[(–
a
/2)x]exp[i(nkx–
ω
t)]
E(x,t) = E
0
exp[i(kx –
ω
t)]
Absorption depth = 1/a
λ
λ/
n
Wavelength decreases
Single-exponential decay
(the first term is zero by definition of a as cut-off value).
F(w)F(w)*= Lorentian
Linewidth from superposition of different frequencies
Indiv-
idual
waves
Sum
Envel-
ope
Irrad-
iance:
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser and comb laser
Linewidth of CW laser
homogenous
Homogenous and Inhomogeneous broadening
Homogenous and Inhomogeneous broadening
Different individual emissions different frequency of light, we call it “inhomogeneous” (exists mostly in gas states, and special cases in solid states)
For example:
Cold cavity linewidth (1)
Note that:
FSR= C/2L
Etalon Transmittance vs. Thickness, Wavelength, or Angle
The transmittance varies significantly with thickness or wavelength.�We can also vary the incidence angle, which also affects δ.
As the reflectance of each surface (r2) approaches 1, the widths of the high-transmission regions become very narrow.
Transmission maxima occur when:
2πL/λ = 2mπ
or:
The Etalon Free Spectral Range
λFSR
λFSR =
Free Spectral
Range
The Free Spectral Range is the wavelength range between transmission maxima.
Cold cavity linewidth (2)
The Linewidth δLW is a transmittance peak's full-width-half-max (FWHM).
Setting δ equal to δLW/2 should yield T = 1/2:
For δ << 1, we can make the small argument approx:
The Finesse, F, is the ratio of the �Free Spectral Range and the Linewidth = F/FSR
Substituting we have:
The Finesse is the number of wavelengths the interferometer can resolve.
δ = 2π corresponds to one FSR
taking
Gain narrowing
Laser gain
Atomic linewidth
→
Δ
←
db
3
ω
Siegman: lasers p,281
Home work: α 🡨🡪 χ” ?
α 🡨🡪 I=I0e2αL
△νL=自發放射量子雜訊造成之雷射線寬 hν=每個光子的能量
Po=雷射輸出功率
C =光速 n=雷射共振腔內介質的等效折射率
L=共振腔長
Rb=共振腔中高反射端面的反射率 Rf=共振腔中高反射端面的反射率
α=雷射內部光能量損失系數
nsp=自發放射因子,即每個模的自發放射率對同一模態的單一個光子的激發之比值
β=線寬增幅因子(linewidth enhancement factor),即自發放射引起之折射係數實部變化對虛部變化之比值。
An example for laser linewidth🡪 Extended cavity diode laser (ECDL)
Frequency stabilized lasers
Laser cavity
Light interacts with matter
Frequency-dependent error signal of laser
Feedback loop
Narrow linewidth light source
Cs 6S🡪 8S
F=3🡪 F=3
PZT lock
AOM lock
Off lock
AOM
DPA
Cs 6S 🡪 8S 822.5 nm two-photon transitions
FB
ECDL #1
TA
Cs-Stabilized 822.5 nm ECDL #2
Fiber
Allan Variance checking
KLMLL
δ-stabilization
Δ-stabilization
GPS
OSA/autocorelator
to User (DFCS)
grating
PZT
7 mW (diode)
200 mW (comb)
40 mW (comb)
GPS
AT
Different transfer function to PZT and AOM
How to characterize the linewidth of a frequency-stabilized laser 🡪 Allan variance(1)
Laser frequency
time
time
Laser frequency
The two lasers have the same standard deviation on the frequency fluctuations while different Allan variance 🡪 which laser is more stable?
How to characterize the linewidth of a frequency-stabilized laser 🡪 Allan variance (2)
~1/τ0.5
Random noise, central limit theory
World record linewidth
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser and comb laser
Long vs. short pulses of light
and spectral pulse widths is greater than ~1.
Long pulse
Short pulse
But a light bulb is also broadband.� ��What else is required to make an ultrashort pulse?
Answer: “Mode-locking”
Analogy to no-damping free induction process
W1T-W2T=2nπ, T=round trip time
Numerical simulation of mode-locking
Ultrafast lasers often have thousands of modes.
Therefore, frequency difference between modes, we call it repetition rate, that is: Δf = (n+1)c/2L – nc/2L= c/2L, we call it Δ latter in comb laser.
Standing wave criteria in laser cavity: L=nλ/2 , L=cavity length, n= integer
The concept of “repetition rate” comes from time-domain:
T=2L/c
Repetition rate Δ=1/T
Linewidth from mode-locked laser
Indiv-
idual
waves
Sum
Envel-
ope
Irrad-
iance:
25 Femto-second
?
25 Femto-second
?
~40 nm
Femto-second comb laser -- Introduction
δ
I(f)
f
fn=nΔ-δ.
Δ
Δ.
0
τr.t.= 1/Δ
t
E(t)
φ=2πδ/Δ
Δ = Comb spacing
δ = Comb offset from
harmonics of Δ
φ = Phase slip b/t carrier &
envelope each round trip
δ
Phase velocity ≠ Group velocity
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, Science 288, 635 (2000).
Two kinds of combs
Self-reference by J. Hall
Reference to frequency standard by T. Hansch
LOCKED
LOCKED
LOCKED
LOCKED
Self-reference
Referring to frequency standard
Cs stabilized CW laser
Slave mode-locked laser
Offset-frequency locking, δ
Ultra-stable RF source
Repetition rate locking, Δ
δ
I(f)
f
fn=nΔ-δ.
Δ
Δ.
0
Progress in our group: instability of Δ: < 1 mHz. Δ fn ~200 Hz.
Cs standard from NIST
10 MHz time base
Global Positioning System (GPS)
Frequency
domain
I(f)
f
δ
0
f
n
= n
f
rep
+
δ
f
rep
x2
f
2n
=
2n
f
rep
+
δ
δ
I(f)
f
δ
0
f
n
= n
f
rep
+
δ
f
rep
x2
f
2n
=
2n
f
rep
+
δ
δ
Cs standard from NIST
5 MHz time base
Highly stable synthesizer
Feedback control laser
Microstructure Optical Fiber �Continuum Generation
courtesy of Jinendra Ranka
fs comb after prism
Linewidth of optical frequency comb laser
🡪 could be considered as superposition of 106 frequency-stabilized laser light sources, on the other words, superposition of 106 coherent state photons.
AOM
DPA
Cs 6S 🡪 8S 822.5 nm two-photon transitions
FB
ECDL #1
TA
Cs-Stabilized 822.5 nm ECDL #2
Fiber
Allan Variance checking
KLMLL
δ-stabilization
Δ-stabilization
GPS
OSA/autocorelator
to User (DFCS)
grating
PZT
7 mW (diode)
200 mW (comb)
40 mW (comb)
GPS
AT
Comb laser in IAMS🡪 the other approach
Motivations
1. Set up a frequency standard for the use of Ti:sapphire lasers
Rb 778 nm
Cs 822 nm
2. Possibly related to clock transition
3. More objective since 6S 🡪 8 S is not sensitive to magnetic field of the earth (Rb 778 is for 5S 🡪 5D)
4. Narrower linewidth than one photon transition
5. Potentially, could make a portable comb by referring to the Cs-stabilized diode laser
Linewidth of spectrum – the way matter feels light
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser
Lorentian linewidth
1.Lorentian comes from damping oscillation
2. For examples
-- nature linewidth (nature broadening)
-- collision linewidth (pressure broadening)
-- nonlinear effect (power broadening)
Lorentz model about dipole oscillator
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser
What is the Maxwell-Boltzmann Distribution?
All the molecules of a particular chemical, compound or element have the same mass, so their kinetic energy is only dependent on the speed of the particles.
Remember Kinetic Energy = ½mv2
In any particular mixture of moving molecules, the speed will vary a great deal, from very slow particles (low energy) to very fast particles (high energy). Most of the particles however will be moving at a speed very close to the average.
The Maxwell-Boltzmann distribution shows how the speeds (and hence the energies) of a mixture of moving particles varies at a particular temperature.
The Maxwell-Boltzmann Distribution
Points to notice:
For the reaction to occur, the particles involved need a minimum amount of energy - the Activation energy (EACT). If a particle is not in the shaded area, then it will not have the required energy so it will not be able to participate in the reaction.
fL= f0(1+v/c)
fL= f0(1-v/c)
ΔfD =Doppler linewidth
🡪Where the linewidth originates
🡪Linewidth of CW laser
🡪Linewidth of mode-locked laser
Other linewidth (broadening)
1.Voigt profile (Viogt linewidth)
2. Transit broadening (sinc/Gaussian linewidth)
3. Wave front curvature distortion
Saturation broadening and lamb dip
Power shift
Power broadening
Linewidth for weak power (a<<1)
a = saturation parameter 🡪 laser power and dipole transition probability
dipole transition probability
laser power
Linewidth of two-photon transitions
a11
a22
a11
a11
a22
a22
a12
a21
a12=a21
a11= saturation parameter by incident light
a22= saturation parameter by reflecting back light
a21= saturation parameter by both lights
t
E(t)
Transit broadening
Transit broadening for Gaussian beam
Wavefront curvature broadening– correction of transit time broadening
R
r
x
r ~ waist~w
Δ ωω =Δf/T
T=transit time=w/v
大綱
Part II: 高解析雷射光譜應用之例子
一級長度標準之建立 �
In 1983
Meter
is defined as light travels in vaccum
in 1/299792458
sec
0
1
meter
一級長度標準之建立
Iodine-stabilized
green He-Ne laser
Wavelength
standard
In 1992
雷射共振腔
碘分子超精細光譜
誤差訊號
回授控制電路
控制雷射腔長
40 Hz uncertainty per 5.5*1014 oscillation cycle
(for 30 sec. sampling)
一級長度標準之建立
一級長度標準之建立
λ/4
waveplate
PBS
6 cm I
2
cell
Mirror
( R=90% )
output
ω
3
ω
ω
Chart
Recorder
Heater
PZT
Screw
Photodiode
Function
Generator
Lock-in
Amplifier
f = 20
cm
PI Feedback
Controller
Faraday
Isolator
一級長度標準之建立
a serious
- R(12)26-0
b serious
- R(106)28-0
一級長度標準之建立
Wang-Yau Cheng, Jow-Tsong Shy, JOSA B, 18, 363 (2001).
W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J.Ye,
Opt. Lett., 27, 571 (2002)
超高解析雷射光譜及新長度標準
超高解析雷射光譜及新長度標準
=
=
~ 109+109+5000+500 Hz
the hyperfine constant eq. Q, C, d, d could be determined by measuring the frequency intervals among the hyperfine lines
2
1
2
1
2
1
:
6
1
I
I
m
B
m
i
B
i
m
E
Q
∙
∙
∙
+
−
−
∇
−
δ
2
1
]
2
12
/
)
2
ˆ
1
ˆ
)(
2
ˆ
1
ˆ
(
3
2
1
ˆ
[
)
,
,
(
I
I
r
I
I
I
I
I
I
d
J
I
C
F
J
I
eqQf
δ
+
−
−
−
−
∙
∙
∙
∙
R(12) 26-0 R(106) 28-0
DeqQ (MHz) 1917.62(7) 1914.452 (14)
DC (kHz) 59.1(2) 70.268 (8)
Dd (kHz) -35 (2) -34.6(6)
Dd(kHz) -15(3) -6.7(9)
standard 8.1 6.8
deviation (kHz)
The lower level constants are following: eqQ"=-2452.5837 MHz, C"=3.162 kHz, d"=1.58 kHz and d"=3.66 kHz. Here, DeqQ=eqQ'-eqQ"=high level-low level, the rest constants Dc, Dd, Dd may be deduced by analogy.
由實驗值計算得出之超精細常數
超高解析雷射光譜及新長度標準�在 JILA 之工作
Wavelength: 507 nm
Time constant: 5 ms, linewidth: 100 kHz
uncertainty could be below 1 Hz per second
(二) 原子核物理之應用���Wang-Yau Cheng, Jow-Tsong Shy, Apply Physics B: 70, 1 (2000).
原子核物理之應用
νt: 雷射頻率
M1,2: 同位素質量
A: 質子、電子重量比
MHz
M
M
A
M
M
t
n
1267
1
2
1
2
=
×
×
−
=
Δ
ν
ν
n
t)
measuremen
(this
total
s
ν
ν
ν
+
=
Δ
原子核物理之應用
原子核物理之應用
*本實驗證實SMS J-dependence 之說法
結論:
原子核物理之應用
(三) 光纖通訊之頻標��������W.-Y. Cheng, J. –S. Shy, T. Lin, C. –C. Chou,�“Molecular Iodine Spectra and Laser Stabilization by Frequency-Doubled 1534 nm Diode Laser” �JJAP 44, 3055-3058 (2005)
光纖通訊之頻標
光頻率高達
1014 Hz !!!
如何定頻標?
光纖通訊之頻標
過去定頻標的問題:
使用碘分子超精細光譜的好處:
問題:
光纖通訊之頻標
Isolator
1/4
λ
Plate
I
2
Cell
PBS
Photodiode
1550 nm
Diode Laser
EDFA
Lock-in
Amplifier
PI
Controller
Fiber
Coupler
Polarization
Controller
QPM PPLN
Waveguide
Temperature
Controller
Schematic diagram of the iodine-stabilized 1550 nm diode laser system. PBS: polarizing beam splitter.
Function
Generator
(三) 精細結構常數 α 值之確認���� .Gulin Wu, Wang-Yau Cheng, Jow-Tsong Shy
精細結構常數 a 值之確認
a 到底是否為 universal constant, 須利用各種互不相關之物理定律來驗證
精細結構常數 a 值之確認
S. Chu’s laboratory, Appl. Phys. B, 217 (1994)
精細結構常數 α 值之確認
精細結構常數 a 值之確認
本實驗:α-1=137.0360144(27)
其他實驗: