1 of 95

高解析雷射光譜及其應用

Special topics course

Lecture speaker: Wang-Yau Cheng

2007/6

2 of 95

大綱

      • 何謂高解析?
      • 雷射線寬與譜線線寬的概念
      • 幾個高解析雷射光譜應用之例子

3 of 95

一般名稱 常用單位 常見應用 例

(解析度)

Laser Spectroscopy cm-1 (~30 GHz) 分子振動光譜 化學分析

High Resolution GHz 微波光譜 Lamb Shift

Laser Spectroscopy 拉曼光譜 Four-wave Mixing

Ultra-high Resolution < MHz 超精細光譜 Laser Cooling, BEC

Laser Spectroscopy Hyperfine Structure

Length Standard

量測所使用的工具決定了物理的說法� -- J. S. Schwinger

4 of 95

Concept of Linewidth

Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser and comb laser

Linewidth of spectrum (The way matter feels light)

🡪 Lorentian linewidth

🡪 Doppler linewidth

🡪 Other linewidthes

5 of 95

Linewidth of light

6 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser and comb laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

7 of 95

Linewidth from uncertainty principle

(Well, then we don’t need any interpretation since uncertainty anywhere)

Linewidth from phase interrupted

Linewidth from amplitude change

Linewidth from superposition of different frequencies

Linewidth of light

8 of 95

Talk again about frequency?

1.What is perfect wave?

2. What is “frequency”? What is phase?

2. What is “instantaneous frequency”?

3. What is “linewidth”?

9 of 95

Linewidth from phase interrupted

10 of 95

Collisions broaden the frequency range of�light emission.

  • A collision abruptly changes the phase of the sine-wave light emission.

  • Gases at atmospheric pressure have emission widths of ~ 1 GHz.
  • Solids and liquids emit much broader ranges of frequencies.

11 of 95

12 of 95

E(f)

t

E(t)

f

~ 1/a

Linewidth!

13 of 95

14 of 95

Like damping OSC. 🡪 Lorentian

15 of 95

Linewidth from amplitude change

k

nk

E(x,t) = E

0

exp[(–

a

/2)x]exp[i(nkx–

ω

t)]

E(x,t) = E

0

exp[i(kx –

ω

t)]

Absorption depth = 1/a

λ

λ/

n

Wavelength decreases

16 of 95

Single-exponential decay

(the first term is zero by definition of a as cut-off value).

F(w)F(w)*= Lorentian

17 of 95

Linewidth from superposition of different frequencies

Indiv-

idual

waves

Sum

Envel-

ope

Irrad-

iance:

18 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser and comb laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

19 of 95

Linewidth of CW laser

  • Homogeneous and inhomogeneous broadening in gain medium

  • Cold cavity linewidth

  • Gain narrowing effect

  • Shawlow-Townes limit

  • Frequency-stabilized lasers

homogenous

20 of 95

Homogenous and Inhomogeneous broadening

  • Every individual emissions the same linewidth of light, but different individual might emission different frequency of light

21 of 95

Homogenous and Inhomogeneous broadening

Different individual emissions different frequency of light, we call it “inhomogeneous” (exists mostly in gas states, and special cases in solid states)

For example:

22 of 95

Cold cavity linewidth (1)

Note that:

FSR= C/2L

23 of 95

Etalon Transmittance vs. Thickness, Wavelength, or Angle

The transmittance varies significantly with thickness or wavelength.�We can also vary the incidence angle, which also affects δ.

As the reflectance of each surface (r2) approaches 1, the widths of the high-transmission regions become very narrow.

Transmission maxima occur when:

2πL/λ = 2mπ

or:

24 of 95

The Etalon Free Spectral Range

λFSR

λFSR =

Free Spectral

Range

The Free Spectral Range is the wavelength range between transmission maxima.

25 of 95

Cold cavity linewidth (2)

The Linewidth δLW is a transmittance peak's full-width-half-max (FWHM).

Setting δ equal to δLW/2 should yield T = 1/2:

For δ << 1, we can make the small argument approx:

The Finesse, F, is the ratio of the �Free Spectral Range and the Linewidth = F/FSR

Substituting we have:

The Finesse is the number of wavelengths the interferometer can resolve.

δ = 2π corresponds to one FSR

taking

26 of 95

Gain narrowing

Laser gain

Atomic linewidth

Δ

db

3

ω

Siegman: lasers p,281

Home work: α 🡨🡪 χ” ?

α 🡨🡪 I=I0e2αL

27 of 95

△νL=自發放射量子雜訊造成之雷射線寬 hν=每個光子的能量

Po=雷射輸出功率

C =光速 n=雷射共振腔內介質的等效折射率

L=共振腔長

Rb=共振腔中高反射端面的反射率 Rf=共振腔中高反射端面的反射率

α=雷射內部光能量損失系數

nsp=自發放射因子,即每個模的自發放射率對同一模態的單一個光子的激發之比值

β=線寬增幅因子(linewidth enhancement factor),即自發放射引起之折射係數實部變化對虛部變化之比值。

  • Shawlow-Townes limit

28 of 95

An example for laser linewidth🡪 Extended cavity diode laser (ECDL)

29 of 95

Frequency stabilized lasers

Laser cavity

Light interacts with matter

Frequency-dependent error signal of laser

Feedback loop

Narrow linewidth light source

30 of 95

Cs 6S🡪 8S

F=3🡪 F=3

PZT lock

AOM lock

Off lock

AOM

DPA

Cs 6S 🡪 8S 822.5 nm two-photon transitions

FB

ECDL #1

TA

Cs-Stabilized 822.5 nm ECDL #2

Fiber

Allan Variance checking

KLMLL

δ-stabilization

Δ-stabilization

GPS

OSA/autocorelator

to User (DFCS)

grating

PZT

7 mW (diode)

200 mW (comb)

40 mW (comb)

GPS

AT

Different transfer function to PZT and AOM

31 of 95

How to characterize the linewidth of a frequency-stabilized laser 🡪 Allan variance(1)

Laser frequency

time

time

Laser frequency

The two lasers have the same standard deviation on the frequency fluctuations while different Allan variance 🡪 which laser is more stable?

32 of 95

How to characterize the linewidth of a frequency-stabilized laser 🡪 Allan variance (2)

~1/τ0.5

Random noise, central limit theory

33 of 95

World record linewidth

34 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser and comb laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

35 of 95

Long vs. short pulses of light

  • The uncertainty principle says that the product of the temporal

and spectral pulse widths is greater than ~1.

Long pulse

Short pulse

36 of 95

But a light bulb is also broadband.� ��What else is required to make an ultrashort pulse?

Answer: “Mode-locking”

37 of 95

Analogy to no-damping free induction process

  • Locking the phases of the laser modes yields an ultrashort pulse.

W1T-W2T=2nπ, T=round trip time

38 of 95

Numerical simulation of mode-locking

Ultrafast lasers often have thousands of modes.

39 of 95

Therefore, frequency difference between modes, we call it repetition rate, that is: Δf = (n+1)c/2L – nc/2L= c/2L, we call it Δ latter in comb laser.

Standing wave criteria in laser cavity: L=nλ/2 , L=cavity length, n= integer

40 of 95

The concept of “repetition rate” comes from time-domain:

T=2L/c

Repetition rate Δ=1/T

41 of 95

Linewidth from mode-locked laser

Indiv-

idual

waves

Sum

Envel-

ope

Irrad-

iance:

25 Femto-second

?

42 of 95

25 Femto-second

?

~40 nm

43 of 95

Femto-second comb laser -- Introduction

δ

I(f)

f

fn=nΔ-δ.

Δ

Δ.

0

τr.t.= 1/Δ

t

E(t)

φ=2πδ/Δ

Δ = Comb spacing

δ = Comb offset from

harmonics of Δ

φ = Phase slip b/t carrier &

envelope each round trip

δ

Phase velocity ≠ Group velocity

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, Science 288, 635 (2000).

44 of 95

45 of 95

Two kinds of combs

Self-reference by J. Hall

Reference to frequency standard by T. Hansch

46 of 95

LOCKED

LOCKED

LOCKED

LOCKED

Self-reference

Referring to frequency standard

    • fm is not sensitive to Δ (m~106 ,n-m~104 )

47 of 95

Cs stabilized CW laser

Slave mode-locked laser

Offset-frequency locking, δ

Ultra-stable RF source

Repetition rate locking, Δ

δ

I(f)

f

fn=nΔ-δ.

Δ

Δ.

0

Progress in our group: instability of Δ: < 1 mHz. Δ fn ~200 Hz.

Cs standard from NIST

10 MHz time base

Global Positioning System (GPS)

48 of 95

Frequency

domain

I(f)

f

δ

0

f

n

= n

f

rep

+

δ

f

rep

x2

f

2n

=

2n

f

rep

+

δ

δ

I(f)

f

δ

0

f

n

= n

f

rep

+

δ

f

rep

x2

f

2n

=

2n

f

rep

+

δ

δ

Cs standard from NIST

5 MHz time base

Highly stable synthesizer

Feedback control laser

49 of 95

Microstructure Optical Fiber �Continuum Generation

courtesy of Jinendra Ranka

50 of 95

fs comb after prism

51 of 95

Linewidth of optical frequency comb laser

  • Linewidth of each mode: characterized by the conditions of frequency stabilization, typically smaller than 10 kHz

  • Bandwidth could even more than 90 nm

🡪 could be considered as superposition of 106 frequency-stabilized laser light sources, on the other words, superposition of 106 coherent state photons.

52 of 95

AOM

DPA

Cs 6S 🡪 8S 822.5 nm two-photon transitions

FB

ECDL #1

TA

Cs-Stabilized 822.5 nm ECDL #2

Fiber

Allan Variance checking

KLMLL

δ-stabilization

Δ-stabilization

GPS

OSA/autocorelator

to User (DFCS)

grating

PZT

7 mW (diode)

200 mW (comb)

40 mW (comb)

GPS

AT

Comb laser in IAMS🡪 the other approach

53 of 95

Motivations

1. Set up a frequency standard for the use of Ti:sapphire lasers

Rb 778 nm

Cs 822 nm

2. Possibly related to clock transition

3. More objective since 6S 🡪 8 S is not sensitive to magnetic field of the earth (Rb 778 is for 5S 🡪 5D)

4. Narrower linewidth than one photon transition

5. Potentially, could make a portable comb by referring to the Cs-stabilized diode laser

54 of 95

Linewidth of spectrum – the way matter feels light

55 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

56 of 95

Lorentian linewidth

1.Lorentian comes from damping oscillation

2. For examples

-- nature linewidth (nature broadening)

-- collision linewidth (pressure broadening)

-- nonlinear effect (power broadening)

57 of 95

Lorentz model about dipole oscillator

58 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

59 of 95

60 of 95

What is the Maxwell-Boltzmann Distribution?

All the molecules of a particular chemical, compound or element have the same mass, so their kinetic energy is only dependent on the speed of the particles.

Remember Kinetic Energy = ½mv2

In any particular mixture of moving molecules, the speed will vary a great deal, from very slow particles (low energy) to very fast particles (high energy). Most of the particles however will be moving at a speed very close to the average.

The Maxwell-Boltzmann distribution shows how the speeds (and hence the energies) of a mixture of moving particles varies at a particular temperature.

The Maxwell-Boltzmann Distribution

Points to notice:

    • No molecules at zero energy
    • Few molecules at high energy
    • No maximum energy value

For the reaction to occur, the particles involved need a minimum amount of energy - the Activation energy (EACT). If a particle is not in the shaded area, then it will not have the required energy so it will not be able to participate in the reaction.

61 of 95

62 of 95

fL= f0(1+v/c)

fL= f0(1-v/c)

ΔfD =Doppler linewidth

63 of 95

  1. Linewidth of light

🡪Where the linewidth originates

🡪Linewidth of CW laser

🡪Linewidth of mode-locked laser

  • Linewidth of spectrum (The way matter feels light)
    • Lorentian linewidth
    • Doppler linewidth
    • Other linewidthes

64 of 95

Other linewidth (broadening)

1.Voigt profile (Viogt linewidth)

2. Transit broadening (sinc/Gaussian linewidth)

3. Wave front curvature distortion

65 of 95

Saturation broadening and lamb dip

Power shift

Power broadening

Linewidth for weak power (a<<1)

a = saturation parameter 🡪 laser power and dipole transition probability

dipole transition probability

laser power

66 of 95

Linewidth of two-photon transitions

a11

a22

a11

a11

a22

a22

a12

a21

a12=a21

a11= saturation parameter by incident light

a22= saturation parameter by reflecting back light

a21= saturation parameter by both lights

67 of 95

t

E(t)

Transit broadening

68 of 95

Transit broadening for Gaussian beam

69 of 95

Wavefront curvature broadening– correction of transit time broadening

R

r

x

r ~ waist~w

Δ ωω =Δf/T

T=transit time=w/v

70 of 95

大綱

Part II: 高解析雷射光譜應用之例子

      • 一級長度標準之建立
      • 原子核物理之應用
      • 光纖通訊之頻標
      • 精細結構常數 α 值之確認
      • 超高解析雷射光譜及新長度標準 (光鐘 )
      • 直接光梳光譜

71 of 95

一級長度標準之建立

In 1983

Meter

is defined as light travels in vaccum

in 1/299792458

sec

0

1

meter

72 of 95

一級長度標準之建立

Iodine-stabilized

green He-Ne laser

Wavelength

standard

In 1992

73 of 95

雷射共振腔

碘分子超精細光譜

誤差訊號

回授控制電路

控制雷射腔長

40 Hz uncertainty per 5.5*1014 oscillation cycle

(for 30 sec. sampling)

一級長度標準之建立

74 of 95

一級長度標準之建立

λ/4

waveplate

PBS

6 cm I

2

cell

Mirror

( R=90% )

output

ω

3

ω

ω

Chart

Recorder

Heater

PZT

Screw

Photodiode

Function

Generator

Lock-in

Amplifier

f = 20

cm

PI Feedback

Controller

Faraday

Isolator

75 of 95

一級長度標準之建立

a serious

- R(12)26-0

b serious

- R(106)28-0

76 of 95

一級長度標準之建立

77 of 95

Wang-Yau Cheng, Jow-Tsong Shy, JOSA B, 18, 363 (2001).

W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J.Ye,

Opt. Lett., 27, 571 (2002)

78 of 95

超高解析雷射光譜及新長度標準

  • 碘分子超精細光譜之重要性:

    • 從近紅外到可見光之最重要的光學尺

    • 非常狹窄的線寬(linewidth)適合於基礎分子特性研究。(molecule cooling, pre-dissociation, molecule recoil effect, ...)

79 of 95

超高解析雷射光譜及新長度標準

  • 碘分子超精細光譜
  • Hhyperfine= Hneq+Hsr+Htss+Hsss

=

=

~ 109+109+5000+500 Hz

the hyperfine constant eq. Q, C, d, d could be determined by measuring the frequency intervals among the hyperfine lines

2

1

2

1

2

1

:

6

1

I

I

m

B

m

i

B

i

m

E

Q

+

δ

2

1

]

2

12

/

)

2

ˆ

1

ˆ

)(

2

ˆ

1

ˆ

(

3

2

1

ˆ

[

)

,

,

(

I

I

r

I

I

I

I

I

I

d

J

I

C

F

J

I

eqQf

δ

+

80 of 95

R(12) 26-0 R(106) 28-0

DeqQ (MHz) 1917.62(7) 1914.452 (14)

DC (kHz) 59.1(2) 70.268 (8)

Dd (kHz) -35 (2) -34.6(6)

Dd(kHz) -15(3) -6.7(9)

standard 8.1 6.8

deviation (kHz)

The lower level constants are following: eqQ"=-2452.5837 MHz, C"=3.162 kHz, d"=1.58 kHz and d"=3.66 kHz. Here, DeqQ=eqQ'-eqQ"=high level-low level, the rest constants Dc, Dd, Dd may be deduced by analogy.

由實驗值計算得出之超精細常數

81 of 95

超高解析雷射光譜及新長度標準�在 JILA 之工作

Wavelength: 507 nm

Time constant: 5 ms, linewidth: 100 kHz

uncertainty could be below 1 Hz per second

82 of 95

(二) 原子核物理之應用�Wang-Yau Cheng, Jow-Tsong Shy, Apply Physics B: 70, 1 (2000).

83 of 95

原子核物理之應用

  • Normal Mass Shift (νn)

νt: 雷射頻率

M1,2: 同位素質量

  • Specific Mass Shift (νs)

A: 質子、電子重量比

MHz

M

M

A

M

M

t

n

1267

1

2

1

2

=

×

×

=

Δ

ν

ν

n

t)

measuremen

(this

total

s

ν

ν

ν

+

=

Δ

84 of 95

原子核物理之應用

85 of 95

原子核物理之應用

*本實驗證實SMS J-dependence 之說法

  • 結論:(for specific mass shift)

        • 對Ne 3 s2 --> 2p10 之躍遷 (綠光)
          • 本實驗所得為:-2535 MHz

        • 對 Ne 3s2 --> 2p4 之躍遷(紅光)
          • 其他實驗所得為: -2919MHz

86 of 95

結論:

  • 測量了二種同位素雷射之絕對頻率

  • 得出 specific mass shift

  • 與high finesse Fabry-Perot etalon 配合可從事需同時具有長、短期穩定度之實驗

原子核物理之應用

87 of 95

(三) 光纖通訊之頻標��������W.-Y. Cheng, J. –S. Shy, T. Lin, C. –C. Chou,�“Molecular Iodine Spectra and Laser Stabilization by Frequency-Doubled 1534 nm Diode Laser” �JJAP 44, 3055-3058 (2005)

88 of 95

光纖通訊之頻標

光頻率高達

1014 Hz !!!

如何定頻標?

89 of 95

光纖通訊之頻標

過去定頻標的問題:

  • 可吸收此波段之原子分子太少
  • 即使有原子分子可於此波段躍遷,範圍仍過小(only few GHz),不敷未來使用

使用碘分子超精細光譜的好處:

  • 頻標密集
  • 超精細躍遷線寬小

問題:

  • 須二倍頻或三倍頻才有可吸收的譜線

90 of 95

光纖通訊之頻標

Isolator

1/4

λ

Plate

I

2

Cell

PBS

Photodiode

1550 nm

Diode Laser

EDFA

Lock-in

Amplifier

PI

Controller

Fiber

Coupler

Polarization

Controller

QPM PPLN

Waveguide

Temperature

Controller

Schematic diagram of the iodine-stabilized 1550 nm diode laser system. PBS: polarizing beam splitter.

Function

Generator

91 of 95

(三) 精細結構常數 α 值之確認��� .Gulin Wu, Wang-Yau Cheng, Jow-Tsong Shy

92 of 95

精細結構常數 a 值之確認

a 到底是否為 universal constant, 須利用各種互不相關之物理定律來驗證

93 of 95

精細結構常數 a 值之確認

S. Chu’s laboratory, Appl. Phys. B, 217 (1994)

94 of 95

精細結構常數 α 值之確認

95 of 95

精細結構常數 a 值之確認

本實驗:α-1=137.0360144(27)

其他實驗:

  • α-1=137.03599958(13)
  • by electron annomalous magnetic moment (T. Kinoshita, 2000)
  • α-1=137.0360108(52)
  • by neutron interferometry (Kruger et al., 1995)
  • α-1=137.0359979(32)
  • by quantum Hall effect (Cage et al., 1989)
  • α-1=137.0359770(77)
  • by ac Josephson effect (Williams et al. , 1989)