Approximation Algorithms for�Combinatorial Auctions with Complement-Free Bidders
Speaker: Shahar Dobzinski
Joint work with Noam Nisan & Michael Schapira
Talk Structure
2
Combinatorial Auctions
Common assumptions:
3
Access Models
4
Known Results
5
The Hierarchy of CF Valuations
6
OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF
Lehmann, Lehmann, Nisan
Talk Structure
7
Intuition
8
The Algorithm – Step 1
Maximize: Σi,Sxi,Svi(S)
Subject To:
9
The Algorithm – Step 2
10
The Algorithm – Step 3
11
The Algorithm – Step 3
12
A
B
D
The Algorithm – Step 3
13
A
B
D
S11 = {A,B,D}
The Algorithm – Step 3
14
A
B
D
C
E
A
D
The Algorithm – Step 3
15
C
E
A
D
S21 = {C,E}
S22 = {A,D}
The Algorithm – Step 3
16
A
B
D
C
E
A
D
C
E
A
The Algorithm – Step 3
17
C
E
A
S32 = {C,E}
S33 = {A}
The Algorithm – Step 3
18
A
B
D
C
E
A
D
C
E
A
B
D
The Algorithm – Step 3
19
A
B
D
C
E
A
D
C
E
A
B
D
B
C
E
The Algorithm – Step 4
ΣtΣivi(Sit) = ΣiΣtvi(Sit) ≥ Σivi(Si) ≥ OPT*/2
🡺 For the t that maximizes Σivi(Sit), it holds that: � Σivi(Sit) ≥ OPT*/2k = OPT*/O(log(m)).
20
Talk Structure
21
Incentive Compatibility & VCG Prices
Oi is the optimal allocation, O-i the optimal allocation of the auction without the i’th bidder.
22
VCG on a Subset of the Range
23
The Algorithm
(We have used only value queries)
24
1
2
3
A
B
Items
Bidders
v1(A)
v3(B)
The Algorithm (Cont.)
25
Proof of the Approximation Ratio
Theorem: If all valuations are CF, the algorithm provides an O(m1/2)-approximation.
Proof: Let OPT=(T1,..,Tk,Q1,...,Ql), where for each Ti, |Ti|>m1/2, and for each Qi, |Qi|≤m1/2. |OPT|= Σivi(Ti) + Σivi(Qi)
26
Case 1: Σivi(Ti) > Σivi(Qi)
(“large” bundles contribute most of the social welfare)
🡺 Σivi(Qi) > |OPT|/2
At most m1/2 bidders get at least m1/2 items in OPT.
🡺 For the bidder i the bidder i that maximizes vi(M), �vi(M) > |OPT|/2m1/2.
Case 2: Σivi(Qi) ≥ Σivi(Ti)
(“small” bundles contribute most of the social welfare)
🡺 Σivi(Qi) ≥ |OPT|/2
For each bidder i, there is an item ci, such that: vi(ci) > vi(Qi) / m1/2.
(The CF property ensures that the sum of the values is larger than the value of the whole bundle)
{ci}i is an allocation with at most one item to each bidder: �|P| ≥ Σici ≥ |OPT|/2m1/2.
Talk Structure
27
A Lower Bound of 2-ε
28
A Lower Bound of 2-ε (Cont.)
29
Talk Structure
30
Definition of XOS
0 otherwise
31
XOS Properties
32
Supporting Prices
33
The Algorithm
34
Example
35
Items: {A, B, C, D, E}. 3 bidders.
Final allocation: {A,B} to bidder 1, {C,D,E} to bidder 3.
Proof
Lemma: The total social welfare generated by the algorithm is at least Σpi.
Lemma: The optimal social welfare is at most 2Σpi.
36
Proof – Lemma 1
Lemma: The total social welfare generated by the algorithm is at least Σpi.
Proof:
37
Proof – Lemma 2
Lemma: The optimal social welfare is at most 2Σpi.
Proof:
vi(Oi)-Σj∈Oi pi,j ≤ Σj pi,j – Σj p(i-1),j
vi (Oi )-Σj∈Oi pn,j ≤ Σj pi,j – Σj p(i-1),j
Σi vi(Oi )-ΣiΣj∈Oi pn,j ≤ Σi (Sj pi,j – Σj p(i-1),j)
Σi vi(Oi )-Σj pn,j ≤ Σj pn,j
Σi vi(Oi ) ≤ 2Σj pn,j
38
Talk Structure
39
k-Set Cover
40
The Reduction
41
A
B
C
D
E
F
v1: (A:1 OR D:1) XOR (A:1 OR D:1) � XOR (D:1 OR E:1 OR F:1)
vk: (A:1 OR D:1) XOR (A:1 OR D:1) � XOR (D:1 OR E:1 OR F:1)
k-Set-Cover Instance
XOS Auction with k bidders