
Ceph PGs
Jing, mqjing@gmail.com

Placement Group, PG

● Without PGs, it will be difficult to manage and track tens of millions of
objects that are replicated and spread over hundreds of OSD

● Using PGs
○ Reduce computational penalty
○ Increasing PG number will reduce the per OSD load

● Each PG requires system resources, CPU, and memory

How PGs are Used?

A placement group (PG)
aggregates objects within a pool

Usage: Tracking object placement
and object metadata.

The object’s contents within a PG are stored in a set of OSDs.

For instance, in a replicated 2
pool, each PG will store objects on
2 OSDs

2

Should OSD#2 fail

When OSD # 2 fail

1. Another will be assigned to PG #1
2. Will be filled with copies of all objects in
OSD #1

New
OSD

When Pool Size Changed: 2 --> 3

1. An additional OSD will be assigned to the PG
2. Will receive copies of all objects in the PG

● PG does not own the OSD, they share it with other PGs from the
same/other pools

● When PG number increases,
○ The new PGs will be assigned OSDs
○ The CRUSH function will change and some objects move some objects from former PGs

will be copied to the new PGs and remove the old one

Data Durability Issue

The OSD fails and all copies of
the object it contains are lost.
For all objects within the PG the
number of replica suddenly
drops from 3 to 2.

Ceph starts recovery for this
PG by choosing a new OSD to
re-create the third copy of all
objects.

Another OSD, within the same
placement group, fails before
the new OSD is fully populated
with the third copy.

Some objects will then only
have one surviving copies.

Ceph picks yet another OSD
and keeps copying objects to
restore the desired number of
copies.

A third OSD, within the same
placement group, fails before
recovery is complete.

If this OSD contained the only
remaining copy of an object, it
is permanently lost

Cascading failures leading to the permanent loss of a Placement Group

Example

A cluster containing 10 OSDs with 512 PGs in a 3 replica pool

● CRUSH will give each PG 3 OSDs
● In the end, each OSDs will hosting (512 * 3) / 10 = ~150 PGs

1 OSD fail

● When the first OSD fails, the above scenario will therefore start recovery
for all 150 PGs at the same time.

● The 150 PGs being recovered are likely to be homogeneously spread over
the 9 remaining OSDs.

10 OSD Cluster

20 OSD Cluster

A cluster containing (10 ->20) OSDs with 512 PGs in a 3 replica pool

● CRUSH will give each PG 3 OSDs
● In the end, each OSDs will hosting (512 * 3) / 20 = (~150 -> ~75) PGs

+ 1 OSD crashed
+ 19 OSD to do backfill

operation

● Copy size: 10 OSDs cluster had to copy ~ 100GB each, they now have to
copy 50GB each instead.

●

20 OSD Cluster:
1 OSD = 1TB (failure)
9 OSD to do backfill operation

+ Recovery will happen twice
as fast

+ ==> In other words, recovery
goes faster when the number
of OSDs increases.

+ each OSD is hosted by a 1TB

40 OSD Cluster

A cluster containing (10 -> 20 -> 40) OSDs with 512 PGs in a 3 replica pool

● CRUSH will give each PG 3 OSDs
● In the end, each OSDs will hosting (512 * 3) / 40 = ~35 PGs

 + 1 OSD crashed
+ 39 OSD to do backfill

operation

● Copy size: 10 OSDs cluster had to copy ~ 100GB each, they now have to
copy 25GB each instead.

●

20 OSD Cluster:
1 OSD = 1TB (failure)
9 OSD to do backfill operation

+ Recovery will happen twice
as fast

+ ==> In other words, recovery
goes faster when the number
of OSDs increases.

+ each OSD is hosted by a 1TB

200 OSD Cluster

A cluster containing 200 OSDs with 512 PGs in a 3 replica pool

● CRUSH will give each PG 3 OSDs
● In the end, each OSDs will hosting (512 * 3) / 200 = 7 PGs

 + 1 OSD crashed
+ 7 * 3 = 21 OSD to do

backfill operation (pg
* replica)

● Copy size: 10 OSDs cluster had to copy ~ 100GB each, they now have to
copy 47GB each instead.

20 OSD Cluster:
1 OSD = 1TB (failure)
9 OSD to do backfill operation

+ Recovery will longer than 40
OSD

+ ==> In other words, recovery
goes faster when the number
of OSDs increases. --><--

+ each OSD is hosted by a 1TB

1T / 9 = 999GB

1T / 21 = 47GB + Adjust PG_Num

● In a nutshell, more OSDs mean faster recovery and a lower risk of
cascading failures leading to the permanent loss of a PG.

Object Distribution Issue

if there was single a PG for 10 OSDs in a 3 replica pool

==> only three OSD would be used because CRUSH would have no other choice.

When more PGs are available, objects are more likely to be evenly
spread among them.

PG

OSD OSD OSD OSD OSD

No used

Choosing the number of PGs

If you have more than 50 OSDs, we recommend approximately 50-100 PGs per
OSD to balance out resource usage, data durability and distribution.

If you have less than 50 OSDs, choosing among the preselection (next page) is
best

Choose PG NUMBER

● < 5 OSDs, set pg_num = 128
● 5 ~ 10 OSDs, set pg_num = 512
● 10 ~ 50 OSDs, set pg_num = 4096

ceph osd pool set {pool-name} pg_num

Example

A cluster containing 160 OSDs in a 3 replica pool

(160 * 100)
--------------- = 5333.3333 ~ 8192 PGs
 3

It's important to balance the number of PGs per pool with the number of PGs
per OSD (1. Balanced the PG # per pool 2. Balanced the PG # per OSD)

如何根據現狀調整 PG and PGP?

● PGP is the PG for Placement purpose, which should be
kept equal to the total number of PGs

● Step 1: Check the existing PG and PGP number
○ ceph osd pool get data-pool pg_num
○ ceph osd pool get data-pool pgp_num

經過長期操作後, (1) OSD 可能會增加或減少, (2) Pool 的數量可能會增加或減少
如何的根據 cluster 的現狀, 調整 PG and PGP number?

● Step 2: Check 目前 Cluster 的各項重要參數 {OSD
number, replication pool size, Pool count}
○ ceph osd dump | grep size

● Total OSD number = 9, replication pool size = 2,
Pool count =3

 (9 * 100)
--------------- = 450
 2

Total PGs per Pool = Total PGs / pool count = 450/3
= 150 ~ 256

● Step 3: Set the PG and PGP number for all other pool

Update data-pool

○ ceph osd pool set data-pool pg_num 256
○ ceph osd pool set data-pool pgp_num 256

Monitoring OSDs

● An OSD's status
○ in: in the cluster
○ out: out of the cluster
○ up: up and running
○ down: not running

Previous Currently Behavior

in out Ceph will migrate PGs to
other OSDs

in/out out Ceph will not assign PGs to
the OSD

Ceph is NOT Healthy_OK

● You haven't started the cluster yet
● The OSDs are in the peering when you just started/restart the cluster
● You just added/removed an OSD
● You just have modified your cluster map

OSD Status Check

Command Description Note

ceph osd stat ● Check how many OSDs
● Check how many are up
● Check how many are in

ceph osd tree ● Identify the ceph-osd daemons that aren't
running

sudo
/etc/init.d/ceph -a
start osd.1

● Start an OSD, if it down

PG Sets

● If a POOL requires 3 replicas of a PG, CRUSH may assign them to osd.1,
osd.2, osd.3

● CRUSH seeks a pseudo-random placement that will take into account
failure domains you set in CRUSH MAP

● Acting Set
○ As a set of OSDs that contain the replicas of a PG

When A OSD in the Acting Set is down

Action Ceph Behavior Note

When You added or removed an
OSD

Ceph reassigned the PGs to other OSDs
==> Changing the composition of the Acting Set
==> Spawning the migration of data with "backfill"
process

When OSD was down, was
restarted

Ceph is now recovering

An OSD in the Acting Set is
down or unable to service
requests

Another OSD has temporarily assumed it duties

Up Set

● Up Set: the set of OSDs that will actually handle the requests
● The Up Set and Acting Set are virtually identical

When Ceph Behavior Note

Up Set != Acting Set ● Ceph is migrating Data
● An OSD is recovering
● The cluster is rebalancing itself
● Problem: HEALTHY WARN with "stuck state"

Check PG Status

Situation Command Note

List of PG ● ceph pg dump

To view which OSDs are within
the Acting Set or the Up Set

● ceph pg map {pg-num}

OSD.1, OSD.0

PG ID Format:
 {pool-num}.{pg-id}

Ex:

 6.39 ==> pool 6, 39 id

Point

Peering

● 寫入 data 之前, 這些PG 的狀態必須是 Active + Clean, 所以必須讓這個 PG
內的所有 OSD Daemons 都同意目前的狀態. 這個驗證同意的工作在 Ceph
的設計裡稱為 Peering

○ 作法: 就是讓 PG 中 Acting set 的第一個 OSD (primary OSD) 向 second OSD, 第三個 OSD 進
行驗證 active + clean 狀態

● Peering 完畢後, OSDs 也會回報狀態給 Monitor

Peering

When Ceph is Peering a placement group

● Ceph is bringing the OSDs that store the replicas of the PG into agreement
about the state of the objects and metadata in the PG

簡單的說, 就是讓那些儲存 replica
objects 的 OSDs, 都同意目前
primary OSD 裡面 pg 中 objects 和
metadata 的狀態

Peering: Establish Agreement of the PG status

Before you can write data to a PG, it must be in active state, and it should be in
clean state

● For Ceph to determine the current state of a PG
○ The primary OSD of the PG (the first OSD in acting set), peers with the secondary and

tertiary OSDs to establish agreement on the current state of the objects and metadata in
the placement group

● The OSDs also report the status to the Monitor

Monitoring PG States

When Note

[Pool] Just create a pool and PG haven't peered yet

[Recovering] The PG are recovering

[OSD] Just added an OSD or removed an OSD

[CRUSHMap] Just modified the CRUSH map and your PG are migrating

[Status error] There is inconsistent data in different replicas of a PG

Ceph is scrubbing a PG's replicas

Ceph does NOT HEALTH_OK

Check PG Stat

Total pg number

How many pg
are active+clean

the capacity

List Pool

ceph osd lspools

Total Pool = 14

PG IDs

Format: {pool-num}.{pg-id}

ex: 0.1f
pool-num = 0
pg-id = 1

The Output Format of the placement group

Format Command

JSON format ceph pg dump -o {filename} --format=json

Query PG ceph pg {poolnum}.{pg-id} query

PG

ref

If the Pool-A
requires three
replicas of a PG,
CRUSH may
assign them to
osd.0, osd.2 and
osd.5 respectively
[ref]

http://karan-mj.blogspot.fi/2014/01/how-data-is-stored-in-ceph-cluster.html
http://docs.ceph.com/docs/v0.79/rados/operations/monitoring-osd-pg/

Creating PG

When you create a pool, Ceph will create the number of placement groups you
specified. Ceph will echo "creating" when it is creating PGs.

Step 1: Once PGs are created, the OSDs that are part of a PG's Acting Set will
peer

Step 2: Once peering completed, the PG's status should be 'active + clean'

Ceph Client can begin write to the PG

Create A Pool

ceph osd pool create {pool-name} {pg-num} [{pgp-num}] [replicated] \
 [crush-ruleset-name]

ceph osd pool create {pool-name} {pg-num} {pgp-num} erasure \
 [erasure-code-profile] [crush-ruleset-name]

The total number of PGs
for the pool. The default
value 8 is NOT suitable for
most systems.

Peering

● When Ceph is Peering a placement group, Ceph is bring the OSDs that
store the replicas of the placement group into agreement about the state
of the object and metadata in the placement group

A Peering Process for a Pool with Replica 3

Active

● When a PG is in the active state.
○ The data in the PG is generally available in the

primary placement group and the replicas for read
and write operations

在 pg 中的 data object 通常已經
available 在 primary 與 它的replica
中, 準備被讀寫

Clean

● When a PG is in the clean state,
○ The primary OSD and the replica OSDs have

successfully peered
○ There are no stray replicas for the PG
○ Ceph replicated all objects in the PG the correct

number of times

若一個 pg 稱為 clean state
● 表示 primary OSD 與 replica

OSDs 都同意了在 pg 中的
data objects與 metadata 狀態

● 這個 pg 面沒有 stray replicas

DEGRADED

● A primary OSD writes the object to storage, the PG will
remain in a degraded state until the primary OSD has
received an acknowledgement from the replica OSDs
that Ceph created the replica objects successfully

● 當 replica OSD 還沒回報
replica object 已經成功寫入
前, 這個 PG 就都會保持著
degraded 狀態

PG with {active + degraded}

● An OSD may be active even though it doesn’t hold all of the objects yet
● If an OSD goes down, Ceph marks each PG assigned to the OSD as

degraded

例如資料 available for read/write 了,
但是其中有些 replica objects 還不
能存取

Recovering

● When an OSD goes down, its contents may fail behind the current state of
other replicas in the PG

● Ceph was designed for fault-tolerance at a scale where hardware and
software problems are ongoing

Backing Filling (1/2)

● When a new OSD joins the cluster, CRUSH will assign PG from OSDs in the
cluster to the newly added OSD

State Behavior

backfill_wait a backfill operation is pending

backfill a backfill operation is underway

backfill_too_full a backfill operation was requested, but
couldn’t be completed due to insufficient
storage capacity

Backing Filling (2/2)

Setup Behavior Default Value

osd max backfills the maximum number of concurrent
backfills to or from an OSD

10

osd backfill full ratio Enables an OSD to refuse a backfill
request if the OSD is approaching its its
full ratio (85%, by default).

85%

all setting: ref

http://docs.ceph.com/docs/v0.71/rados/configuration/osd-config-ref/#backfilling

Remapped

● When the Acting Set that services a PG changes, the data migrates from
the old acting set to the new acting set

Stale

● The ceph-osd daemons may also get into a stuck state where they aren't
reporting statistics in a timely manner (e.g., a temporary network fault)
while Ceph uses heartbeat to ensure the system are running

○ If the primary OSD of a placement group's acting set fails to report to the monitor or
○ If other OSDs have reported the primary OSDs down

==> the monitor will mark the placement group stale

Identifying Troubled PGs (1/2)

State Behavior

Unclean Placement groups contain objects that are not replicated the desired number
of times. They should be recovering

InActive Placement groups cannot process reads or writes because they are waiting
for an OSD with the most up-to-date data to come back up.

Stale Placement groups are in an unknown state, because the OSDs that host them
have not reported to the monitor cluster in a while (configured by mon osd
report timeout).

Identify Trouble PGs (2/2)

ceph pg dump_stuck [unclean | inactive | stale]

Finding An Object Location

● To store object data in the Ceph Object Store, a Ceph client must:
○ Set an object name
○ Specify a pool

list pools
ceph osd lspools

list objects from a pool
rados -p {pool-name} ls

identify the object location (OSDs)
ceph osd map {pool-name} {object-name}

identify the object location (Hosts)
ceph osd tree

1

2

3

Reference

● http://docs.ceph.com/docs/v0.79/rados/operations/monitoring-osd-pg/
●

http://docs.ceph.com/docs/v0.79/rados/operations/monitoring-osd-pg/

