
An Understand of WebPKI
Or What Does That Green Lock Actually Mean

What is WebPKI?

WebPKI is the infrastructure that provides encryption and authentication across
the Internet.

Short for Web Public Key Infrastructure, it is a system of interconnected
components that provide the backbone of encrypted communications across the
Internet. This is built of out two different standards, the Transport Layer Security
standard which provides encryption, and the x509 certificate standard which
provides authentication.

In short it is this:

The Green Lock

Authentication and Encryption

To provide a secure system, you need two elements.

Authentication: to prove who you are communicating with

Encryption: to prevent people from seeing what you’re transmitting

WebPKI is the mechanism that provides both these things through two separate
but interconnected services. The same PKI infrastructure is also used for secure
email (S/MIME) and code signing (such as Microsoft Authenticode and Secure
Boot).

Transport Layer Security

TLS is the encryption part of WebPKI, and provides the S in HTTPS.

Directly descended from Netscape’s Secure Socket Layer, Transport Layer Security
(TLS) uses secure handshaking and a set of known secure algorithms to provide
end-to-end encryption from point to point.

TLS is used in web browsers, VPNs, email transmission and many more products
to list here.

TLS was recently updated to version 1.3

Example Session

OpenSSL provides a simple client to connect to TLS-enabled sessions, and provide
details.

For example, we’ll use openssl s_client to connect to a secure webserver on port
443 (the secure HTTP port), and request a webpage.

openssl s_client
$ openssl s_client -connect soylentnews.org -port 443

CONNECTED(00000003)

...

SSL handshake has read 3771 bytes and written 302 bytes

Verification: OK

...

GET /

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

Who Do We Prove Who We’re Talking To

TLS provides encryption, making sure a third party can not intercept
communications, but how do we know who we’re actually talking to?

That is provided by a chain of trust of certificates issued from a set of root
certificates. These root certificates provide the trust anchors in the chain of trust.

Certificate authorities are organizations who are roles who verify a host and
issued a signature saying “this person is who they say they are”.

Firefox Certificate Root’s

Root Certificates

There are hundreds of root certificates. These are collected in five relatively well
known certificate stores.

● Microsoft’s Trusted Root Certificate Store
○ Used by Internet Explorer, and any application using Windows SChannel API
○ Also used by Firefox on Windows in certain cases.

● Google’s Certificate Storage (used by Chrome and Android)
● Apple’s Root Store
● Oracle Java’s Root Certificate Store
● Mozilla’s NSS Certificate Store

Root Certificates (Continued)

Most open source projects base their root certificate store on Mozilla’s roots.

Root certificates are typically hardcoded in applications and libraries and difficult
to change. As they are trust anchors, they also can’t be directly revoked or disabled
short of removing them from the list of “accepted roots”.

Furthermore, a root certificate can sign a certificate for any domain or purpose. A
malicious actor who could gain access to a root certificate can effectively
impersonate any website on the internet, undermine VPN security, or fraudiantly
create S/MIME signed emails.

In short, compromise of any root certificate is very bad.

Intermediate Certificates

Because of this risk, WebPKI root certificates are stored in hardware security
managers (HSM), and not directly connected to the Internet. Furthermore, certain
roots are only trusted for certain roles (known as keyUsages); for example, Let’s
Encrypt’s root certificate is only trusted to issue certificates for use by webservers
(known as serverAuth certificates).

To partially counteract this risk, intermediate certificates are created and used to
delegate the functionality of a root certificate. Signing directly from the root is
prohibited by the CA/B Forum Policy guidelines.

Intermediate Certificate Usage

Intermediate Certificates are standard x509 certificates with the CA:TRUE bit set;
meaning they can in turn be used to sign for other certificates. In a typical
scenario, you may have the following certificates directly signed from the root to
provide services.

● Issuance certificates for a given role (such as serverAuth)
○ These are often pathLen restricted, meaning they can’t create a third level of CA:TRUE

certificates

● Revocation control certificates used for OCSP
● Name restricted certificates (more on this later)

The Chain of Trust of defcon201.org

To help digest this, let’s look at the chain of trust for defcon201.org. At the time of
writing, defcon201.org is signed by a Let’s Encrypt certificate, and has a path
length of two, meaning that there is a root certificate, one intermediate certificate,
and the leaf certificate that verifies defcon201.org

This is the output of the Qualy's SSLLabs testing tool which clearly shows the
chain of trust from the root certificate.

Defcon201.org Certificate Chain

Chain of Trust Breakdown

Although Let’s Encrypt is a root certificate authority (and not a subCA), their root
certificate is relatively new and not included with all browsers yet. Instead, their
intermediate certificates are cross-signed by IdenTrust, allowing legacy browsers
to successfully validate them.

Let’s Encrypt provides a helpful diagram breaking this down.

Chain of Trust Breakdown

Understand x509 Paths

If your brain has melted, that’s not a problem. This is not the easiest concept to
grasp. Let’s start at the leaf certificate for defcon201.org and look at end user
certificate first.

Defcon201.org has what’s known as a domain validated (DV) certificate, so only
the domain name itself is verified with no other details. The certificate information
itself can easily be viewed in Chrome and Firefox.

Defcon201.org’s leaf certificate

Breakdown of a leaf certificate

Common to all x509 certificates are the following components:

● Allowed key usages, including if it’s a CA certificate (CA:TRUE)
● Whom a certificate was issued to
● Whom a certificate was issued by
● A validity period of when the certificate was issued and when it expires.
● The entity the certificate covers (known as the commonName).

There is also a set of extended attributes that are important, but for the moment,
we’re only concerned with one, the subjectAlternateName.

subjectAlternateName and extendedKeyUsage

Leaf certificates can cover multiple names in a single certificate beyond what’s
specified in the commonName field. How can can be used is defined by the key
usage field. These are known as subject alternative names and are encoded as an
extension to the x509 certificate. Let’s look at defcon201.org’s SAN names and
extendedKeyUsage.

DC201’s subjectAlternateNames

DC201 Extended Key Usage

Leaf Certificate Summary

This certificate contains the following information

● It was signed by Let’s Encrypt’s X3 Intermediate Certificate
● It covers the following domains: dc201.org, defcon201.org, www.dc201.org,

and www.defcon201.org
● It is valid for authenticating itself as as a webserver and as a webclient

○ The later is used for certain types of HTTP authentication, but is rare on the public internet

● It is valid until February 16th, 2019
● It does NOT contain authentication information about the organization

In short, it’s everything important about the ID of defcon201.org

Sidenote: Types of Leaf Certificate

There are three types of leaf certificate used on the Internet today:

Domain Validated (DV): The certificate assert that the domain belongs to
whomever owns it. These are the most common certificates in use on the Internet;
and are the type issued by Let’s Encrypt

Organization Validated (OV): These certificates also assert the organization that
own a domain. They’re extremely rare, and can be identified by the
organization/state/country fields on the certification being not null. There is
normally no user visable difference between a DV/OV certificate.

Sidenote: Types of Leaf Certificate

Extended Validation (EV): EV certifications are OV certificates that have done
additional vetting and have additional rules such as no wildcards. EV certificates
show up with a special green bar that show up with the organizations name at the
top of the page.

Beside cosmetic differences and display of the organization, there is no difference
in the type of security or level of encryption offered by these types of certificates.

What About The Intermediate Certificate

Since the leaf certificate contains everything we need to know about
defcon201.org, let’s go up the chain and take a look at the intermediate certificate,
and see what information it contains.

Unfortunately, Chrome doesn’t provide a nice interface to look at intermediate
certificates, so we’ll use the command line openssl utility to examine this
certificate a little more in-depth. Some output has been excluded for brevity sake.
Important information has been bolded

X3 Intermediate Certificate
$ openssl x509 -in /tmp/x3.pem -noout -text
Certificate:
 Data:
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O = Digital Signature Trust Co., CN = DST Root CA X3
 Validity
 Not Before: Mar 17 16:40:46 2016 GMT
 Not After : Mar 17 16:40:46 2021 GMT
 Subject: C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:0
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Authority Information Access:
 OCSP - URI:http://isrg.trustid.ocsp.identrust.com
 CA Issuers - URI:http://apps.identrust.com/roots/dstrootcax3.p7c
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.identrust.com/DSTROOTCAX3CRL.crl

Breakdown of the Intermediate Certificate

Compared to the leaf certificate, the intermediate certificate has relatively little
information in it. The most relevant information is the subject, issuer, and the key
authentication bits.

Let’s start with the subject:

 Subject: C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3

This identifies the certificate as as the certificate Let’s Encrypt’s intermediate
certificate. The organization and country fields are filled out and set in this
certificate.

Breakdown of the Intermediate Certificate

x.509 does not directly support multiple issuers (also known as cross-signing).
Instead multiple versions of the certificate are created signed from different roots
and a certificate chain is formed through that. In this version of the intermediate
certificate, it was signed by the IdenTrust DST root certificate as seen by the issuer

 Issuer: O = Digital Signature Trust Co., CN = DST Root CA X3

The most important part however comes from the usage bits which we’ll cover
next.

X3 Allowed Key Usage

From the dump

 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:0
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign

This certificate has the CA:TRUE bit set, meaning it can sign for other certificates,
but it’s restricted to a pathlen of 0.

That means that it can’t sign other certificates that are CA:TRUE as there can be
no certificate chaining off this one except for leaf certificates.

X3 Allowed Key Usage

The key usage fields also limit what this certificate can be directly used for.
Specifically, this intermediate certificate can sign other certificates (Certificate
Sign), provide digital signatures (Digital Signature bit), and sign certificate
revocation lists (one of two methods of revoking an otherwise valid certificate)

It also contains AIA information for OCSP, the other revocation method:

 Authority Information Access:
 OCSP - URI:http://isrg.trustid.ocsp.identrust.com
 CA Issuers - URI:http://apps.identrust.com/roots/dstrootcax3.p7c

We’ll talk about OCSP later in this presentation.

Before moving on, let’s take a quick look at the DST root.

DST Root CA 3

Compared to the other certificates, the DST root certificate is relatively barren. It is
a self-signed certificate as we’ll see in the dump in the next slide), and merely has
the CA:TRUE flag set with no other restrictions set on it.

Root certificate capabilities are limited by the certificate storage and the bits
assigned to it (for example, is this a EV root, can it sign mail certificates, etc.).

Dump of the DST Root Certificate
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 44:af:b0:80:d6:a3:27:ba:89:30:39:86:2e:f8:40:6b
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: O = Digital Signature Trust Co., CN = DST Root CA X3
 Validity
 Not Before: Sep 30 21:12:19 2000 GMT
 Not After : Sep 30 14:01:15 2021 GMT
 Subject: O = Digital Signature Trust Co., CN = DST Root CA X3
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 C4:A7:B1:A4:7B:2C:71:FA:DB:E1:4B:90:75:FF:C4:15:60:85:89:10

Summarization of DST X3 Root Certificate

Unlike the intermediate certificate, the root certificate does not provide
information relating to revocation; this specific root certificate pre-dates the AIA
certificate standard where that information was encoded in the PEM certificate.

Furthermore, the root certificate is unrestrained; it can generate any type of
certificate with any path-length and can be used to create sub-CAs; intermediate
certificates with no restriction on path length.

In practice, intermediate certificates can’t be revoked through traditional means.

Intermediate vs. Root Certificates

In practice, there’s relatively little difference between an unrestrained intermediate
certificate, and a root certificate.

If an unrestricted intermediate certificate (or even one with limited restrictions
such as pathLen 0) were to leak, it would allow attackers to sign valid certificates
for any website with any validity bits.

As intermediate certificates do not need to be directly included in a root store to
create valid certificate, an undisclosed intermediate is an active threat to the
security of the internet and can be very difficult to detect.

It gets worse ...

Throughout this talk, I have alluded to talking about certificate revocation. There
are two mechanisms in x.509 certificates to revoke a misissued or lost certificate,
known as certification revocation lists (CRLs) and the online certificate status
protocol (OCSP).

While these mechanisms can theoretically handle the revocation of any type of
certificate beyond a root certificate, in practice, policy and technical constraints
prevents certificate revocation from being an effective tool at combating
misissued or lost certificates. Let’s quickly run through these.

Certificate Revocation Lists

CRLs, as the name suggests, are static files that simply contain a list of
certificates that are revoked. CRL lists contain periods they are valid for notifying
clients when they have to be updated. CRL download locations can be encoded
with a certificate via AIA, or hardcoded within a root store.

They’re automatically generated and signed by intermediate and root certificates
whenever a certificate is revoked; it is the responsibility of the client to download
and check CRL. This is problematic as CRLs can be very large, and for the most
part are not used by modern web browsers in favor of OCSP.

Online Certificate Status Protocol

OCSP provides a leaner alternative to CRL lists; instead of downloading massive
lists for each and every root certificate, a TLS client can simply query the OCSP
server and ask if a certificate is valid or not. As such, OCSP is considerably more
scalable than CRLs, and openssl contains a OCSP client that can be used to check
certificate status.

Here’s an example session

OCSP Session
$ openssl ocsp -issuer x3.pem -cert dc201.pem -text -url
http://ocsp.int-x3.letsencrypt.org
OCSP Response Data:
 OCSP Response Status: successful (0x0)
 Response Type: Basic OCSP Response
 Version: 1 (0x0)
 Responder Id: C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
 Produced At: Jan 18 05:35:00 2019 GMT
 Cert Status: good
 This Update: Jan 18 05:00:00 2019 GMT
 Next Update: Jan 25 05:00:00 2019 GMT

WARNING: no nonce in response
Response verify OK
dc201.pem: good

This Update: Jan 18 05:00:00 2019 GMT
Next Update: Jan 25 05:00:00 2019 GMT

The problems with OCSP

OCSP has two fundamental problems

● First, everytime the web browser (or any TLS client) makes a OCSP request,
that information is sent to the certificate authority. That means the CA can
see the client IP address of anyone who’s accessing a given website.

● Second, the OCSP server can be down, firewalled, or filtered
○ This means a TLS client may not be able to query OCSP information for a given certificate.

Because of OCSP responders can be DDoSed or blocked by a firewall, no web
browser hard-fails if a OCSP response can not be obtained.

It’s worse than that.

Given an attacker could theoretically DDoS or otherwise manipulate traffic to
prevent OCSP responses, browsers typically only soft-fail if they check OCSP
status at all

Firefox, Edge, Internet Explorer, and Safari check OCSP, but do not hard fail.

Chrome does not make OCSP responses at all, nor does it check revocation
status through any meaningful system; Google uses a CRLSet system which
provides limited revocation for some percentage of the internet, but more likely
than not, Chrome will accept a revoked certificate.

And for the cherry on top

Intermediate certificates are not checked for revocation status directly. In theory
this is because the OCSP server should not generate good responses for unknown
or revoked intermediate certificates.

That means a rogue intermediate certificate can be used with abandon as long an
attacker can successfully block OCSP responses from being received from the
browser.

In practice, WebPKI does not have a functional revocation system due to the
insistence on soft-fail.

The Stopgap Solutions

Undisclosed intermediate certificates are a well-known problem, and one that
often comes up in policy discussion.

To deal with revocation, Firefox has implemented their own special system of
killing intermediate certificates known as OneCRL. Chrome has similar
functionality in CRLSets.

Often-times though, the core TLS libraries used by Firefox and other browsers are
hacked to allow revocation in situations such as the recent Symantec certificate
authority failure. This only works for the browser however.

These Are Not Theoretical Concerns

There have been multiple occasions where intermediate certificates have been
misissued or misused.

Rather famously, unrestrained intermediate certificates have been issued for TLS
man-in-the-middle devices to allow deep packet inspection and allowing
interception of encrypted session. Although disallowed by policy now, there is
nothing preventing this type of attack from being done by a nation state power
with access to a certificate authority.

Commercial Software Products Also Do This

Some commercial AV scanners, such as Anti-Virus Guard, install root certificates
into all the certificate stores on a given system and perform interception of TLS
traffic. This is done to allow to allow deep packet inspection to detect certain
types of malware or data exfiltration.

It is also possible for Windows system administrators to generate and install root
certificates via Active Directory which in turn can be used to intercept and
man-in-the-middle otherwise secure session. An attacker can easily use this
functionality to decrypt traffic from compromised devices.

To Summarize Revocation In a Nutshell

A misissued certificate is a disaster for the ecosystem as there is no meaningful
way to revoke a certificate once issued that ensures that it can’t be used.

While browsers can hack around the problem, users of the certificate store not
using Mozilla’s NSS will not receive protection against certificates that has special
constraints such as the StartSSL, Symanentic, or CNNIC root certificates authority
which are still in the root store, but disallowed to issue new certificates due to
receiving the certificate authority equivalent of a death sentence.

There is however hope.

Certificate Transparency

The first step in solving the problem is understanding the scope.

Certificate transparency is a mechanism built to allow all known public x.509
certificates to be uploaded to log servers and queried through various services
such as crt.sh providing a comprehensive database of known leaf, intermediate,
and root certificates served by web servers around the world.

To further aid study, Google’s web crawlers automatically upload all certificates to
the Google CT log servers. This means it is generally possible to see if any
certificate has been issued for a given domain.

crt.sh’s Undisclosed Intermediately Page

OCSP Stapling

In an attempt to fix OCSP, an extension to TLS was added known as OCSP stapling
was implemented. OCSP stapling means that a web server queries an OCSP
responder for it’s own certificate status and sends it to the client when they
connect to a given secure service.

This prevents a client’s IP from leaking to the certificate authority. As OCSP
responses are issued from a special intermediate certificate, they also can not be
trivially forged. All major web servers today support OCSP stapling.

However, only IIS enables it by default as of writing.

OCSP-Must-Staple

As an additional security measure, it is possible for a leaf certificate to specify
Must-Staple. This, unfortunately, is not a default setting of any CA I’m aware of,
and requires special effort on the creation of a Certificate Signing Request.

OCSP-Must-Staple is a restriction on a leaf certificate; it specifies that a certificate
is only valid if is used in a TLS stapled response; or in other words; the TLS
handshake must have OCSP information in it, and it must be a valid OCSP
response that certifies a certificate is valid.

Expect-CT

In addition, an extension to HTTP allows a web server to tell the browser that a
certificate must contain certificate transparency log information.

Expect-CT can, for a browser, allow a leaf certificate to only be accepted if that
certificate is publicly logged and auditable, which at a minimum makes
discovering MITN attacks from rogue intermediates possible.

Expect-CT headers are cached the browser similar to HSTS, and thus operate on a
Trust On First Use policy. While less than ideal, it can prevent a man-in-the-middle
attack from succeeding.

Key Pinning

In some scenarios, it is also possible to use a technique known as key pinning to
prevent unknown certificates from being used in place of proper ones. For
example, Google Chrome hardcodes in the public key identifiers of google.com
domains.

DANE, and HPKP that can do this for normal websites. However, DANE itself has
technical issues as it’s dependent on DNSSEC and is not implemented in any
major browser. HPKP on the other hand, has been removed from Chrome, and is
dangerous to deploy for browsers that do support it.

Conclusions

WebPKI is an extremely complicated beast, and this slide deck is only the tip of
the iceberg.

Currently, WebPKI’s greatest weakness is the fact that any unrestrained certificate
can sign for any domains. While there are some technical constraints possible,
they’re not wildly deployed on the internet.

However, with the advent of certificate transparency, greater insight is possible
into the world of WebPKI and the health of the ecosystem.

Conclusions

Although revocation as it exists today for WebPKI is essentially broken, as OCSP
stapling and OCSP-Must-Staple become more commonplace, we will hopefully
soon reach a world where a certificate, once revoked, becomes properly useless.

Furthermore, ongoing development on DANE (involving DNSSEC stapling) will
hopefully bring a secure and working key pinning system available to all, and not
just a small majority of high profile websites.

Conclusions

Furthermore, certificate authorities are (unfortunately) the only method of realistic
trust that can be used. With the additional insight and community auditing brought
on by certificate transparency, there is hope that the CA system can be brought to
a point that it is able to provide truly robust and secure authentication.

Questions/Contact?

Twitter: @FOSSFirefighter

Github: https://github.com/ncommander

EMail: michael@casadevall.pro

https://github.com/ncommander
mailto:michael@casadevall.pro

