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Proposed strateqgy

Active Learning

Optimal classification, minimum training
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Plot modified from Chowdhury et al.. 2021, SPIE Medical Imaging



https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11603/2579537/Active-deep-learning-reduces-annotation-burden-in-automatic-cell-segmentation/10.1117/12.2579537.short?SSO=1&tab=ArticleLinkFigureTable

case study: Early SN la classification

Results after 300 loops:

- RandomSampling
— UncSampling Training: 310 alerts
Testing: > 52 000 alerts
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Choose training sample which lead to better results — Trained ML
and train a Random Forest classifier ... model

WJ Leoni et al., 2022, Astronomy & Astrophysics, Volume 663, id.A13, 10 pp -- arxiv:2111.11438 3



Early SN la Fink reported to TNS

Sigmoid features from Leoni et al., 2022
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Off-line train with Active Learning
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Early SN la Fink reported to TNS

Fink early SNIa TNS reported and followed-up spectroscopically

Not a known transient/variable + — . pecgﬁarﬂ.si}J}
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Early SN la Fink reported to TNS

Redshift distribution of Fink TNS reported early SNla
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Early SN la Fink reported to TNS
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Redshift distribution of ZTF spec and Fink reported
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Our emphasis has been high purity!

New developments --- taking
colour into account with Rainbow --
will improve our efficiency
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ELAsTICC challenge
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Cadence is far from ideal
We needed to be able to extract features
with a lower number of points

Example of light curve fitted with
sigmoid + rainbow
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0.5 0.70 0.70
0.6 0.49 0.77
0.7 0.26 0.85

Fraga et al., 2024 - arXiv:astro-ph/2404.08798



https://arxiv.org/pdf/2404.08798

Active Learning for real
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AL: improving training sets

Aka: follow-up to identify early non conclusive SNe la or non la
2CV,16 SN la, 1 SN Ib, 2 SN Ibn, 1 SN Ic, 5 SN Il, and others low SNR
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Observation date

ANU 2.3m IFU for spectroscopic follow-up + extra spectra by DEBASS and ePESSTO+

WJ Working towards a publication later this year



Take home message

e Machine Learning models trained or real data are complementary to those
trained on simulations

e Real data training will always be within the small-data regime

e Active learning is a way to remove the human from the loop, for
classification of well known classes

e The technique is class-independent

e For Rubin all of this should be automated
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