PERKALIAN DAN PEMBAGIAN
BILANGAN BULAT
Perkalian Bilangan Bulat
3 × 2 = 2 + 2 + 2 = 6
3 × (-2) = (-2) + (-2) + (-2) = -6
4 × (-3) = (-3) + (-3) + (-3) + (-3) = -12
Contoh :
3 × (-2) = n
3 × 3 = 9
3 × 2 = 6
3 × 1 = 3
3 × 0 = 0
3 × (-1) = -3
3 × (-2) = -6
Jadi, 3 × (-2) = n
-6 = n,
maka n = -6
-3 × 2 = n
3 × 2 = 6
2 × 2 = 4
1 × 2 = 2
0 × 2 = 0
-1 × 2 = -2
-2 × 2 = -4
-3 × 2 = -6
Jadi, -3 × 2 = n
-6 = n,
Maka n = -6
-3 × (-2) = n
3 × (-2) = -6
2 × (-2) = -4
1 × (-2) = -2
0 × (-2) = 0
-1 × (-2) = 2
-2 × (-2) = 4
-3 × (-2) = 6
Jadi, -3 × (-2) = n
6 = n,
Maka n = 6
1. Dengan pola bilangan
2. Dengan garis bilangan
hasil kali 2 x 3 = 6
Contoh (1): 2 × 3 = ?
0
2
3
4
1
5
6
Pengalinya 2. maju 2 langkah, jalan !
hasil dari -2 x 3 = -6
Contoh (2): -2 × 3 = ?
-6
-4
-3
-2
-5
-1
0
-7
Pengalinya -2. mundur 2 langkah, jalan !
hasil kali 2 x (-3) = -6
Contoh (3): 2 × (-3) = ?
-6
-4
-3
-2
-5
-1
0
-7
Pengalinya 2. maju 2 langkah…, jalan !
hasil kali -2 x (-3) = 6
Contoh (4): -2 × (-3) = ?
0
2
3
4
1
5
6
7
Pengalinya -2. mundur 2 langkah…, jalan !
hasil kali 0 x 3 = 0
Contoh (5): 0 × 3 = ?
0
2
3
1
Pengalinya nol. Diam di tempat !
hasil kali 2 x 0 = 0
Contoh (6): 2 × 0 = ?
0
2
3
1
Kesimpulan :
2 x 3 = 6
-2 x 3 = -6
2 x (-3) = -6
-2 x (-3) = 6
pos × pos = pos ⇨(+) × (+) = (+)
neg × neg = pos ⇨(-) × (-) = (+)
pos × neg = neg ⇨(+) × (-) = (-)
neg × pos = neg ⇨(-) × (+) = (-)
PEMBAGIAN BILANGAN BULAT
Dengan Garis Bilangan
Positif dibagi positif
0
2
3
4
1
5
6
7
1
1
-6
-4
-3
-2
-5
-1
0
-7
1
1
0
2
3
4
1
5
6
7
1
1
-6
-4
-3
-2
-5
-1
0
-7
1
1