Alberto Santos & Yesid Cuesta-Astroz
De las omicas a las multiomicas
2
Cascada de información
Omics over time
The “core” omics disciplines and how they are used to help understand complex biological systems.
Credit: Technology Networks
Hasin et al.,2017
Multi-omics data types in disease research
Omics methods providing insights into a distinct aspect of the biological state of a sample
Hayes et al.,2024
Each distinct omics method provides information about a different but incomplete aspect of the internal state of the cell.
Hayes et al.,2024
Omics and multiomics (aplications)
The life cycle of multi-omics data meets the parasite's life cycles�A multi-omics context of parasite’s life cycle
Kooij et al., 2006
Convirtiendo Datos En Conocimiento
11
11
Muchos datos disponibles en las bases de datos, información
sobre secuencias, estructura y función de proteínas, mutaciones
genéticas, estos datos están disponibles no solo para
humanos sino también para otras especies.
Se propone la integración de estos datos, los cuales contienen
gran cantidad de patrones que pueden ser ensamblados por
medio de la integración de información proveniente de distintas
fuentes.
Genómica del cáncer: Convirtiendo datos en conocimiento
Vazquez et al., 2012
Cellular networks
A graphical representation of a complex system
Network | Interaction |
Protein - Protein | Physical interactions |
Metabolical | Metabolic and transport reactions |
Regulatory networks | Protein / DNA interactions |
PTM networks | Phosphorylation kinase/sustrate |
Non - biological networks�
https://associationsnow.com/wp-content/uploads/2018/04/GettyImages-547533236-800x480.jpg
Relevant questions before integrating omics data
Eckhardt et al., 2020
These models can be represented as a network.
Network models can be dynamic or static depending on a variety of variables, and can include
weights, directionality, groupings to convey additional information.
Network-based modelling
Eckhardt et al., 2020
Computational methods for infering host-parasite interactions
Computational methods for infering host-parasite interactions
Data sources: experimental and computational
Human-parasite interactomes
Parasites pictures: diark.org
P. vivax
P. knowlesi
tissues.jensenlab.org
Brain
Intestine
Skin
Blood
Lymph
Eye
Heart
Muscle
Lung
Liver
Mouth
Nose
Spleen
Bone marrow
L. braziliensis
L. mexicana
Cutaneous leishmaniasis
Visceral leishmaniasis
L. donovani
L. infantum
Trypanosomatida
Apicomplexa
P. falciparum
C. parvum
C. hominis
S. mansoni
T. spiralis
Helminths
G. lamblia
Diplomonadida
T. gondii
Host-parasite interactions: 15 parasites vs 14 tissues
We propose an integrative approach that gives context to the interactions according to the parasite’s life cycle and subcellular localization of the proteins. To understand molecular similarities and differences in host response to diverse sets of parasites. These interactions are also essential to understand parasite infection and local adaptation within the host and vector.
Proteome filtering: adding parasite-specific biological context
Human parasites analyzed
�� Common and specific mechanisms targeted by the studied parasites�
S. mansoni – H. sapiens interactome
This method is available as a web–interface to allow visualization and comparison of interactomes across parasites. OrthoHPI (Orthology–based method to predict Human-Parasite Interactions).
Looking for High Definition Interactomes...�
tissues.jensenlab.org
Brain
Intestine
Skin
Blood
Lymph
Eye
Heart
Muscle
Lung
Liver
Mouth
Nose
Spleen
Bone marrow
L. braziliensis
L. mexicana
Cutaneous leishmaniasis
Visceral leishmaniasis
L. donovani
L. infantum
Trypanosomatida
Apicomplexa
P. falciparum
C. parvum
C. hominis
S. mansoni
T. spiralis
Helminths
G. lamblia
Diplomonadida
T. gondii
P. knowlesi
P. vivax
E. multilocularis
E. histolytica
G. intestinalis
L. major
L. panamensis
T. vaginalis
C. muris
B. bovis
OrthoHPI 2.0
Single-cell definition of host-pathogen interactions
OrthoHPI 2.0 – Methodology
Filtering by cell-type
OrthoHPI 2.0 – Host-Parasite PPIs at tissue and single-cell level
OrthoHPI 2.0 - Host-Parasite PPIs at tissue and single-cell level
OrthoHPI 2.0 – Host-Parasite PPIs at tissue, single-cell and structural level
Findable : data should be easy to find�Accesible: the users finds the required data�
These methods are available as a web–interface to allow visualization and comparison of interactomes across parasites. OrthoHPI (Orthology–based method to predict Human-Parasite Interactions).
https://orthohpi.streamlit.app/
OrthoHPI 1.0
�Interoperable: the data usually need to be integrated with other data�Reusable: optimise the reuse of data�Toxoplasmosis transcriptomics data integrated with OrthoHPI PPIs predictions
(Hu et al., 2020)
Project JAGUAR:�mapping immune cell diversity across Latin America
Ancestry Networks for the Human Cell Atlas
AIM: address how genetic diversity shapes immunity resulting in differences in responses to infections and susceptibility to diseases
STRENGTH: genetic richness of Latin American populations and environmental diversity
Project JAGUAR
1
1
Mapping immune cell diversity across Latin America
HOW: use of single-cell technologies (scRNA-seq, scATAC-seq and scCITE-seq) to identify how diverse ancestries impact gene expression and the composition of immune cells
Work Team
Gosia Trynka
WELLCOME SANGER INSTITUTE
UNITED KINGDOM
Alejandra Medina-Rivera
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
Yesid Cuesta Astroz
UNIVERSIDAD DE ANTIOQUIA
Benilton de Sá Carvalho
UNIVERSITY OF CAMPINAS - UNICAMP
Pablo Alberto Romagnoli INSTITUTO UNIVERSITARIO DE CIENCIAS BIOMÉDICAS DE CÓRDOBA
Luis Alberto Tataje Lavanda
ESCUELA PROFESIONAL DE MEDICINA HUMANA, UNIVERSIDAD PRIVADA SAN JUAN BAUTISTA
Marcela Katherine Sjöberg Herrera
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE
Maximiliano Berro Castiglioni
HOSPITAL DE CLÍNICAS, UNIVERSITY OF THE REPUBLIC
Mexico
Brazil
Argentina
UK
Uruguay
Chile
Colombia
Peru
3
“To understand various disease mechanisms, it is not sufficient to know the precise list of “disease genes”; instead, we should try to map out the detailed wiring diagram of the various cellular components that are influenced by these genes and gene products”.
Network medicine
Network medicine
Conclusions
Feature | Single Omics | Multiomics |
Scope | Focuses on a single molecular layer (e.g., only DNA or only proteins). | Integrates data from multiple layers (e.g., genomics, transcriptomics, and proteomics). |
Understanding | Provides a partial, often associative, view of biological mechanisms. | Offers a more comprehensive, holistic, and systematic understanding of molecular interactions. |
Causality | Often limited to identifying correlations; establishing direct causality can be difficult. | Helps in establishing a chain of causality in molecular events by showing how changes in one layer (e.g., the genome) affect others (e.g., the proteome). |
Predictive Power | Provides insights, but with limitations. | Improves the diagnostic and predictive power for disease states and treatment responses. |
Data integration or connection?
Yes, but please provide context… biological context
Only the objectives and context can define what data to use when and how to combine them