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W3C CG IPR Policy
● See the Community License Agreement  for details.
● Goals are

○ Enable rapid spec development
○ Safe to implement via royalty-free commitments from 

participants+employers 
○ Comfort for committers by limiting scope to OWN contributions
○ Transparency about who is making commitments

● How it works in practice
○ Anyone can post to public-ortc
○ CG members who have signed CLA can post to public-ortc-contrib
○ Editor should ensure that spec includes only “contributions”, CC-ing 

public-ortc-contrib makes that easier on the editor. 

http://www.w3.org/community/about/agreements/cla/


Welcome!
● Welcome to the 2nd meeting of the W3C 

ORTC Community Group!
(renamed from “ORCA Community Group”)

● During this meeting, we hope to:
○ Bring you up to date on the status of the ORTC 

specification.
○ Discuss ORTC priorities
○ Make progress on outstanding issues. 

http://www.w3.org/community/ortc/


About this Virtual Meeting
Information on the meeting 
● Dial-in Number: 585-627-0587 PIN: 10059
● Link to Slides will be published on CG home page & 

ORTC.org

CG Chair
Robin Raymond, Chief Architect - Hookflash Inc.
robin@hookflash.com 

mailto:robin@hookflash.com


W3C ORTC Community Group Basics
● W3C ORTC CG website: 

○ http://www.w3.org/community/ortc/

● Public mailing list:  public-ortc@w3.org
○ Join Here - link on the right hand side
○ Non-members can post to this list. 
○ Non-member contributions are problematic.  

● Contributor’s mailing list: public-ortc-contrib@w3.org
○ Join Here - link on the right hand side
○ Members only, preferred list for contributions to the specification.

http://www.w3.org/community/ortc/
mailto:public-ortc@w3.org
http://www.w3.org/community/ortc/
mailto:public-orca-contrib@w3.org
http://www.w3.org/community/ortc/


Associated Sites

● ORTC website: http://ortc.org/
○ Editor’s drafts, pointers to github repos, etc. 

● ORTC API Issues List: 
https://github.com/openpeer/ortc/issues?state=open

http://ortc.org/
https://github.com/openpeer/ortc/issues?state=open


The Way Forward

● ORTC Big Picture
● ORTC Value Proposition
● ORTC Goals
● Assessment of priorities for the future work



The (Revised) Big Picture



ORTC Main Value Proposition
Areas that provide clear value over 1.0:
● Granular / object level control over RTC 

behaviour without tying to a bigger state machine
● Not tied to a specific blob legacy format (SDP)
● Layering / simulcast with per-layer control



ORTC Goals
● Support RFCs / functionality / capabilities already in 

WebRTC 1.0
● Basic ORTC 1.0 API to start, improve later as problem 

space / requirements are understood
● Clear API rule sets and behaviours for clear 

implementation guidelines
● Cover reasonable set of CG use cases (e.g. mobility, 

simulcasting, layering)



High Priority Issues

● ICE TCP
● ICE restart
● ICE candidate gather policy
● ICE freezing
● API modeling (eg. factory vs ctor)
● RTP simulcast /layering
● Demux / latching rules for 

RtcRtpReceiver
● Stats
● Error handling

Nice to Haves
● ICE candidate packaging
● ICE candidate flushing
● ICE mobility
● RTP contributing sources

Out of Scope for ORTC 1
● ICE candidate priority changing
● ICE aggressive changing knob
● ICE warmth

TBD
● ICE Pacing
● Run-time Changing capabilities
● Special case codec parameters



ORTC 1.0 Criteria

● Already supported in WebRTC 1.0
● API usability
● Problem space / use cases well defined
● Needed for compatibility
● Provides clear value proposition for web 

developers / applications



Questions for the CG

● Do you agree with the stated goals?
● Do you agree with the priorities outlined?



Editor’s Draft Changes
12 April 2014 Editor’s draft:
● http://ortc.org/wp-content/uploads/2014/04/ortc.html

Changes since 13 February 2014 Editor’s draft:
● Support for control of quality, resolution, framerate and layering, as described in 

Issue 31. 
● More support for RTP and codec parameters, as described in Issue 33.
● ICE issues [ICE TCP (41), acquisition of local candidates (43), 

onlocalcandidate definition (44), gather policy (47)] addressed. 
● RTPListener object added, as described in Issue 32. 
● Initial stab at a Stats API, as requested in Issue 46.
● Support for contributing sources added, as requested in Issue 27. 
● Default values added in some cases, to partially address Issue 39. 
● Various NITs fixed, as requested in Issues 34, 37, 38.

http://ortc.org/wp-content/uploads/2014/04/ortc.html
https://github.com/openpeer/ortc/issues/31
https://github.com/openpeer/ortc/issues/33
https://github.com/openpeer/ortc/issues/41
https://github.com/openpeer/ortc/issues/43
https://github.com/openpeer/ortc/issues/44
https://github.com/openpeer/ortc/issues/47
https://github.com/openpeer/ortc/issues/32
https://github.com/openpeer/ortc/issues/46
https://github.com/openpeer/ortc/issues/27
https://github.com/openpeer/ortc/issues/39
https://github.com/openpeer/ortc/issues/34
https://github.com/openpeer/ortc/issues/37
https://github.com/openpeer/ortc/issues/38


Questions for the CG

● Is the CG generally OK with the direction in 
which the Editor’s draft is headed?

● Do you have questions about general 
aspects of the spec?



Coming Attractions

● Broken up "big proposal"
○ layering/simulcast by itself (posted to ortc mail list)

■ https://github.com/openpeer/ortc/issues/61 
○ quality knobs stuff by itself (posted to ortc mail list)

■ https://github.com/openpeer/ortc/issues/62 
● Ideas for non-muxed RTCP
● Minor DataChannel cleanup (posted to mail list)

■ https://github.com/openpeer/ortc/issues/60 

https://github.com/openpeer/ortc/issues/61
https://github.com/openpeer/ortc/issues/62
https://github.com/openpeer/ortc/issues/60


Issues For Discussion Today

● Stats
● ICE TCP
● ICE Gather Policy
● ICE Freezing
● Factory Method Pattern



Stats
● Concept reused from WebRTC 1.0.
● Stats returned are within the context of what each object 

tracks, no difference otherwise.
● Include the existing stats from

http://www.w3.org/2011/04/webrtc/wiki/Stats

● Do we need any additional stats? Use cases?
○ For Receiver/Sender: 

draft-singh-xrblock-webrtc-additional-stats 
○ Anything for DtlsTransport, IceTransport and 

SctpTransport?

http://www.w3.org/2011/04/webrtc/wiki/Stats
http://tools.ietf.org/html/draft-singh-xrblock-webrtc-additional-stats


ICE TCP Proposal (Active / Passive)
● At IETF 89, consensus was to require ICE-TCP support 

(RFC 6544).
● Added TCP candidate type:

enum RTCIceProtocol {
    "udp",
    "tcp"
};

● Offered TCP candidates “passive” or “active”
enum RTCIceTcpType {
    "active",
    "passive"
};

http://tools.ietf.org/html/rfc6544
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceProtocol.udp
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceProtocol.tcp


ICE Gather Policy
● Added from WebRTC 1.0:

enum RTCIceGatherPolicy {
    "all",
    "nohost",
    "relayonly"
};

Does this address the needs of the CG?
Use cases?

http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.all
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.nohost
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.relayonly


● Needed for RTP vs RTCP non-muxed
● Needed for audio / video candidate searches

ICE Freezing
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● How is relationship between RTCIceTransport 
candidates known?

ICE Freezing Implicit vs Explicit

Audio (RTCIceTransport)

Video 1 (RTCIceTransport)

Video 2 (RTCIceTransport)Frozen



ICE Freezing Implicitly
Each candidate has a unique “foundation” based on:

○ type (e.g. host vs server reflexive)
○ base IP
○ connecting server IP (relay only)
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● Relationships expressed in code:

function initiate(signaller) {
 var iceOptions = ...;
 var iceAudio = new RTCIceTransport(RTCIceRole.controlling, iceOptions);

       var iceVideo1 = new RTCIceTransport(iceAudio, RTCIceRole.controlling, iceOptions);
       var iceVideo2 = new RTCIceTransport(iceVideo1, RTCIceRole.controlling, iceOptions);
}

● Can we do implicit relationships?
● Does it cover all needed use cases?
● Do we need explicit RTCIceTransport relationships?

ICE Freezing Explicit



Factory Method Pattern

Pros
● Instantiate abstract interfaces
● Meaningful method signatures:

SomeObject createWithFoo(...)
● Easier to add singletons / static 

helper methods
● Better encapsulation
● Weak coupling
● Possible to add customization 

hooks

Cons
● “new” is clearly creating a specific 

object type
● Consistency with other API(s)? 

which? Do we care?
● More methods inside interface vs 

outside in ctor



function initiate(signaller) {
 var iceOptions = ...;
 var ice = new RTCIceTransport(RTCIceRole.controlling, 
iceOptions);
}

[Constructor(
                     RTCIceRole role,
                     optional RTCIceListener iceListener
                     ), 
 Constructor(
                     RTCIceRole role,
                     RTCIceOptions options
                     )]
interface RTCIceTransport {
    readonly    attribute RTCIceRole           role;
    readonly    attribute RTCIceTransportState state;

    [...]
};

interface RTCIceTransport {
    readonly    attribute RTCIceRole           role;
    readonly    attribute RTCIceTransportState state;

   static RTCIceTransport create(
                                             RTCIceRole role,
                                             optional RTCIceListener iceListener
                                             );
   static RTCIceTransport create(
                                             RTCIceRole role,
                                             RTCIceOptions options
                                             );

    [...]
};

Factory Method Pattern Works like ctor

function initiate(signaller) {
 var iceOptions = ...;
 var ice = RTCIceTransport.create(RTCIceRole.controlling, 
iceOptions);
}

VS

http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceParameters


function initiate(transport) {
 var params = ...;
 var channel = new RTCDataChannel(transport, params);
}

[Constructor(
                     RTCDataTransport transport,
                     RTCDataChannelParameters params)]
interface RTCDataChannel : EventTarget {
    readonly attribute RTCDataTransport transport;
    readonly attribute RTCDataChannelParameters parameters;

    //...
};

interface RTCDataChannel : EventTarget {
    readonly attribute RTCDataTransport transport;
    readonly attribute RTCDataChannelParameters parameters;

    static RTCDataChannel open(
                                                      RTCDataTransport transport,
                                                      RTCDataChannelParameters params
                                                      );

    //...
};

Allows For Meaningful Method Name Signatures

function initiate(transport) {
 var params = ...;
 var channel = RTCDataChannel.open(transport, params);
}

VS



function initiate(transport) {
 var channel = new RTCSctpTransport(transport);
}

interface RTCDataTransport {

}

[Constructor(RTCDtlsTransport transport)]
interface RTCSctpTransport : RTCDataTransport {

  // ...
}

interface RTCDataTransport {

   static RTCDataTransport create(RTCDtlsTransport transport);

}

interface RTCSctpTransport : RTCDataTransport {

  // ...
}

Instantiate Default Derived Interface Types

function initiate(transport) {
 var channel = RTCDataTransport.create(transport);
}

VS



Thank you

Special thanks to:
Bernard Aboba - Microsoft
Michael Champion - MS Open Tech
Justin Uberti - Google
Peter Thatcher - Google
Martin Thomson - Self
Robin Raymond - Hookflash
Erik Lagerway - Hookflash



For More Information

ORTC Community Group
http://www.w3.org/community/ortc/

ORTC website
http://ortc.org  

http://www.w3.org/community/ortc/
http://ortc.org

