
W3C ORTC Community
Group Meeting

April 17, 2014 10:00am-11:30am PDT

W3C CG IPR Policy
● See the Community License Agreement for details.
● Goals are

○ Enable rapid spec development
○ Safe to implement via royalty-free commitments from

participants+employers
○ Comfort for committers by limiting scope to OWN contributions
○ Transparency about who is making commitments

● How it works in practice
○ Anyone can post to public-ortc
○ CG members who have signed CLA can post to public-ortc-contrib
○ Editor should ensure that spec includes only “contributions”, CC-ing

public-ortc-contrib makes that easier on the editor.

http://www.w3.org/community/about/agreements/cla/

Welcome!
● Welcome to the 2nd meeting of the W3C

ORTC Community Group!
(renamed from “ORCA Community Group”)

● During this meeting, we hope to:
○ Bring you up to date on the status of the ORTC

specification.
○ Discuss ORTC priorities
○ Make progress on outstanding issues.

http://www.w3.org/community/ortc/

About this Virtual Meeting
Information on the meeting
● Dial-in Number: 585-627-0587 PIN: 10059
● Link to Slides will be published on CG home page &

ORTC.org

CG Chair
Robin Raymond, Chief Architect - Hookflash Inc.
robin@hookflash.com

mailto:robin@hookflash.com

W3C ORTC Community Group Basics
● W3C ORTC CG website:

○ http://www.w3.org/community/ortc/

● Public mailing list: public-ortc@w3.org
○ Join Here - link on the right hand side
○ Non-members can post to this list.
○ Non-member contributions are problematic.

● Contributor’s mailing list: public-ortc-contrib@w3.org
○ Join Here - link on the right hand side
○ Members only, preferred list for contributions to the specification.

http://www.w3.org/community/ortc/
mailto:public-ortc@w3.org
http://www.w3.org/community/ortc/
mailto:public-orca-contrib@w3.org
http://www.w3.org/community/ortc/

Associated Sites

● ORTC website: http://ortc.org/
○ Editor’s drafts, pointers to github repos, etc.

● ORTC API Issues List:
https://github.com/openpeer/ortc/issues?state=open

http://ortc.org/
https://github.com/openpeer/ortc/issues?state=open

The Way Forward

● ORTC Big Picture
● ORTC Value Proposition
● ORTC Goals
● Assessment of priorities for the future work

The (Revised) Big Picture

ORTC Main Value Proposition
Areas that provide clear value over 1.0:
● Granular / object level control over RTC

behaviour without tying to a bigger state machine
● Not tied to a specific blob legacy format (SDP)
● Layering / simulcast with per-layer control

ORTC Goals
● Support RFCs / functionality / capabilities already in

WebRTC 1.0
● Basic ORTC 1.0 API to start, improve later as problem

space / requirements are understood
● Clear API rule sets and behaviours for clear

implementation guidelines
● Cover reasonable set of CG use cases (e.g. mobility,

simulcasting, layering)

High Priority Issues

● ICE TCP
● ICE restart
● ICE candidate gather policy
● ICE freezing
● API modeling (eg. factory vs ctor)
● RTP simulcast /layering
● Demux / latching rules for

RtcRtpReceiver
● Stats
● Error handling

Nice to Haves
● ICE candidate packaging
● ICE candidate flushing
● ICE mobility
● RTP contributing sources

Out of Scope for ORTC 1
● ICE candidate priority changing
● ICE aggressive changing knob
● ICE warmth

TBD
● ICE Pacing
● Run-time Changing capabilities
● Special case codec parameters

ORTC 1.0 Criteria

● Already supported in WebRTC 1.0
● API usability
● Problem space / use cases well defined
● Needed for compatibility
● Provides clear value proposition for web

developers / applications

Questions for the CG

● Do you agree with the stated goals?
● Do you agree with the priorities outlined?

Editor’s Draft Changes
12 April 2014 Editor’s draft:
● http://ortc.org/wp-content/uploads/2014/04/ortc.html

Changes since 13 February 2014 Editor’s draft:
● Support for control of quality, resolution, framerate and layering, as described in

Issue 31.
● More support for RTP and codec parameters, as described in Issue 33.
● ICE issues [ICE TCP (41), acquisition of local candidates (43),

onlocalcandidate definition (44), gather policy (47)] addressed.
● RTPListener object added, as described in Issue 32.
● Initial stab at a Stats API, as requested in Issue 46.
● Support for contributing sources added, as requested in Issue 27.
● Default values added in some cases, to partially address Issue 39.
● Various NITs fixed, as requested in Issues 34, 37, 38.

http://ortc.org/wp-content/uploads/2014/04/ortc.html
https://github.com/openpeer/ortc/issues/31
https://github.com/openpeer/ortc/issues/33
https://github.com/openpeer/ortc/issues/41
https://github.com/openpeer/ortc/issues/43
https://github.com/openpeer/ortc/issues/44
https://github.com/openpeer/ortc/issues/47
https://github.com/openpeer/ortc/issues/32
https://github.com/openpeer/ortc/issues/46
https://github.com/openpeer/ortc/issues/27
https://github.com/openpeer/ortc/issues/39
https://github.com/openpeer/ortc/issues/34
https://github.com/openpeer/ortc/issues/37
https://github.com/openpeer/ortc/issues/38

Questions for the CG

● Is the CG generally OK with the direction in
which the Editor’s draft is headed?

● Do you have questions about general
aspects of the spec?

Coming Attractions

● Broken up "big proposal"
○ layering/simulcast by itself (posted to ortc mail list)

■ https://github.com/openpeer/ortc/issues/61
○ quality knobs stuff by itself (posted to ortc mail list)

■ https://github.com/openpeer/ortc/issues/62
● Ideas for non-muxed RTCP
● Minor DataChannel cleanup (posted to mail list)

■ https://github.com/openpeer/ortc/issues/60

https://github.com/openpeer/ortc/issues/61
https://github.com/openpeer/ortc/issues/62
https://github.com/openpeer/ortc/issues/60

Issues For Discussion Today

● Stats
● ICE TCP
● ICE Gather Policy
● ICE Freezing
● Factory Method Pattern

Stats
● Concept reused from WebRTC 1.0.
● Stats returned are within the context of what each object

tracks, no difference otherwise.
● Include the existing stats from

http://www.w3.org/2011/04/webrtc/wiki/Stats

● Do we need any additional stats? Use cases?
○ For Receiver/Sender:

draft-singh-xrblock-webrtc-additional-stats
○ Anything for DtlsTransport, IceTransport and

SctpTransport?

http://www.w3.org/2011/04/webrtc/wiki/Stats
http://tools.ietf.org/html/draft-singh-xrblock-webrtc-additional-stats

ICE TCP Proposal (Active / Passive)
● At IETF 89, consensus was to require ICE-TCP support

(RFC 6544).
● Added TCP candidate type:

enum RTCIceProtocol {
 "udp",
 "tcp"
};

● Offered TCP candidates “passive” or “active”
enum RTCIceTcpType {
 "active",
 "passive"
};

http://tools.ietf.org/html/rfc6544
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceProtocol.udp
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceProtocol.tcp

ICE Gather Policy
● Added from WebRTC 1.0:

enum RTCIceGatherPolicy {
 "all",
 "nohost",
 "relayonly"
};

Does this address the needs of the CG?
Use cases?

http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.all
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.nohost
http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceGatherPolicy.relayonly

● Needed for RTP vs RTCP non-muxed
● Needed for audio / video candidate searches

ICE Freezing

Audio (Local)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay Candidate

Audio (Remote)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay Candidate

Video (Local)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay Candidate

Video (Remote)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay CandidateFrozen

Frozen

Candidates
Checks Alternatively could

be RTP and RTCP
ports instead of
audio and video

ports.

● How is relationship between RTCIceTransport
candidates known?

ICE Freezing Implicit vs Explicit

Audio (RTCIceTransport)

Video 1 (RTCIceTransport)

Video 2 (RTCIceTransport)Frozen

ICE Freezing Implicitly
Each candidate has a unique “foundation” based on:

○ type (e.g. host vs server reflexive)
○ base IP
○ connecting server IP (relay only)

Audio (Local)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay Candidate

Video (Local)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay CandidateFrozen

ABC
DEF
GHI
JKL

Audio (Remote)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay Candidate

Video (Remote)
Host Candidate

Host Candidate

Server Reflexive Candidate

Relay CandidateFrozen

MNO
PQR
STU

VWX
+

(s
ha

re
s s

am
e

fo
un

da
tio

n)

Freeze candidate
check upon

"local"+"remote"
foundation matching

Freeze order is
based on

IceTransport
object

construction

1

2

1

2

● Relationships expressed in code:

function initiate(signaller) {
 var iceOptions = ...;
 var iceAudio = new RTCIceTransport(RTCIceRole.controlling, iceOptions);

 var iceVideo1 = new RTCIceTransport(iceAudio, RTCIceRole.controlling, iceOptions);
 var iceVideo2 = new RTCIceTransport(iceVideo1, RTCIceRole.controlling, iceOptions);
}

● Can we do implicit relationships?
● Does it cover all needed use cases?
● Do we need explicit RTCIceTransport relationships?

ICE Freezing Explicit

Factory Method Pattern

Pros
● Instantiate abstract interfaces
● Meaningful method signatures:

SomeObject createWithFoo(...)
● Easier to add singletons / static

helper methods
● Better encapsulation
● Weak coupling
● Possible to add customization

hooks

Cons
● “new” is clearly creating a specific

object type
● Consistency with other API(s)?

which? Do we care?
● More methods inside interface vs

outside in ctor

function initiate(signaller) {
 var iceOptions = ...;
 var ice = new RTCIceTransport(RTCIceRole.controlling,
iceOptions);
}

[Constructor(
 RTCIceRole role,
 optional RTCIceListener iceListener
),
 Constructor(
 RTCIceRole role,
 RTCIceOptions options
)]
interface RTCIceTransport {
 readonly attribute RTCIceRole role;
 readonly attribute RTCIceTransportState state;

 [...]
};

interface RTCIceTransport {
 readonly attribute RTCIceRole role;
 readonly attribute RTCIceTransportState state;

 static RTCIceTransport create(
 RTCIceRole role,
 optional RTCIceListener iceListener
);
 static RTCIceTransport create(
 RTCIceRole role,
 RTCIceOptions options
);

 [...]
};

Factory Method Pattern Works like ctor

function initiate(signaller) {
 var iceOptions = ...;
 var ice = RTCIceTransport.create(RTCIceRole.controlling,
iceOptions);
}

VS

http://ortc.org/wp-content/uploads/2014/04/ortc.html#idl-def-RTCIceParameters

function initiate(transport) {
 var params = ...;
 var channel = new RTCDataChannel(transport, params);
}

[Constructor(
 RTCDataTransport transport,
 RTCDataChannelParameters params)]
interface RTCDataChannel : EventTarget {
 readonly attribute RTCDataTransport transport;
 readonly attribute RTCDataChannelParameters parameters;

 //...
};

interface RTCDataChannel : EventTarget {
 readonly attribute RTCDataTransport transport;
 readonly attribute RTCDataChannelParameters parameters;

 static RTCDataChannel open(
 RTCDataTransport transport,
 RTCDataChannelParameters params
);

 //...
};

Allows For Meaningful Method Name Signatures

function initiate(transport) {
 var params = ...;
 var channel = RTCDataChannel.open(transport, params);
}

VS

function initiate(transport) {
 var channel = new RTCSctpTransport(transport);
}

interface RTCDataTransport {

}

[Constructor(RTCDtlsTransport transport)]
interface RTCSctpTransport : RTCDataTransport {

 // ...
}

interface RTCDataTransport {

 static RTCDataTransport create(RTCDtlsTransport transport);

}

interface RTCSctpTransport : RTCDataTransport {

 // ...
}

Instantiate Default Derived Interface Types

function initiate(transport) {
 var channel = RTCDataTransport.create(transport);
}

VS

Thank you

Special thanks to:
Bernard Aboba - Microsoft
Michael Champion - MS Open Tech
Justin Uberti - Google
Peter Thatcher - Google
Martin Thomson - Self
Robin Raymond - Hookflash
Erik Lagerway - Hookflash

For More Information

ORTC Community Group
http://www.w3.org/community/ortc/

ORTC website
http://ortc.org

http://www.w3.org/community/ortc/
http://ortc.org

