1 of 10

Tidying and Wrangling

Making data useful!

Zachary del Rosario (He/Him)

1

2 of 10

Workshop Schedule

Extract

Wrangle + Tidy

Friday

Saturday

Visualize

Model

Sunday

Monday

Tabula +

WebPlotDigitizer

Python + Jupyter

Concepts

Execution

Concepts

Execution

Concepts

Fin

Focus

Live

Take-Home

2

3 of 10

Tidying and Wrangling

Tidying: Reshaping to tidy data

Wrangling: Unit conversions, data types, invalid/missing values, etc.

Why are these important? (In-chat)

3

4 of 10

Survey Time!

Please fill out this survey:

https://forms.gle/yWZkqDXWSyVDWm41A

Don’t worry, I’ll wait….

4

5 of 10

Looking Forward

Visualizing Tidy Data!

5

6 of 10

Visualizing Tidy Data is Trivial

(

df_converted

>> ggplot(aes(“sigma_MPa”))

+ geom_density()

)

6

7 of 10

Visualizing Tidy Data is Trivial

(

df_converted

>> ggplot(aes(“sigma_MPa”))

+ geom_density()

+ theme_minimal()

+ labs(

x=”Critical Stress (MPa)”,

y=”Density (-)”

)

)

7

8 of 10

Tonight’s Exercise

8

9 of 10

Tonight’s Notebook: Programmatic Data Operations

03_data_assignment

  • Pandas’ DataFrame
  • Grama pipelines
  • How to tidy and wrangle

9

10 of 10

End of Today

Feel free to contact me via email:

    • Zach del Rosario: zdelrosario@olin.edu

10