Cellular Respiration and Fermentation
Chapter 9
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
Overview: Life Is Work
© 2011 Pearson Education, Inc.
Figure 9.1
© 2011 Pearson Education, Inc.
Figure 9.2
Light�energy
ECOSYSTEM
Photosynthesis�in chloroplasts
Cellular respiration�in mitochondria
CO2 + H2O
+ O2
Organic�molecules
ATP powers�most cellular work
ATP
Heat�energy
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels
© 2011 Pearson Education, Inc.
Catabolic Pathways and Production of ATP
© 2011 Pearson Education, Inc.
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + Energy (ATP + heat)
© 2011 Pearson Education, Inc.
Redox Reactions: Oxidation and Reduction
© 2011 Pearson Education, Inc.
The Principle of Redox
© 2011 Pearson Education, Inc.
Figure 9.UN01
becomes oxidized�(loses electron)
becomes reduced�(gains electron)
Figure 9.UN02
becomes oxidized
becomes reduced
© 2011 Pearson Education, Inc.
Figure 9.3
Reactants
Products
Energy
Water
Carbon dioxide
Methane�(reducing�agent)
Oxygen�(oxidizing�agent)
becomes oxidized
becomes reduced
Oxidation of Organic Fuel Molecules During Cellular Respiration
© 2011 Pearson Education, Inc.
Figure 9.UN03
becomes oxidized
becomes reduced
Stepwise Energy Harvest via NAD+ and the Electron Transport Chain
© 2011 Pearson Education, Inc.
Figure 9.4
Nicotinamide�(oxidized form)
NAD+
(from food)
Dehydrogenase
Reduction of NAD+
Oxidation of NADH
Nicotinamide�(reduced form)
NADH
Figure 9.UN04
Dehydrogenase
© 2011 Pearson Education, Inc.
Figure 9.5
(a) Uncontrolled reaction
(b) Cellular respiration
Explosive�release of�heat and light�energy
Controlled�release of�energy for�synthesis of�ATP
Free energy, G
Free energy, G
H2 + 1/2 O2
2 H
+
1/2 O2
1/2 O2
H2O
H2O
2 H+ + 2 e−
2 e−
2 H+
ATP
ATP
ATP
Electron transport�chain
(from food via NADH)
The Stages of Cellular Respiration: A Preview
© 2011 Pearson Education, Inc.
Figure 9.UN05
Glycolysis (color-coded teal throughout the chapter)
1.
Pyruvate oxidation and the citric acid cycle�(color-coded salmon)
2.
Oxidative phosphorylation: electron transport and�chemiosmosis (color-coded violet)
3.
Figure 9.6-1
Electrons�carried�via NADH
Glycolysis
Glucose
Pyruvate
CYTOSOL
MITOCHONDRION
ATP
Substrate-level�phosphorylation
Figure 9.6-2
Electrons�carried�via NADH
Electrons carried�via NADH and�FADH2
Citric�acid�cycle
Pyruvate�oxidation
Acetyl CoA
Glycolysis
Glucose
Pyruvate
CYTOSOL
MITOCHONDRION
ATP
ATP
Substrate-level�phosphorylation
Substrate-level�phosphorylation
Figure 9.6-3
Electrons�carried�via NADH
Electrons carried�via NADH and�FADH2
Citric�acid�cycle
Pyruvate�oxidation
Acetyl CoA
Glycolysis
Glucose
Pyruvate
Oxidative�phosphorylation:�electron transport�and�chemiosmosis
CYTOSOL
MITOCHONDRION
ATP
ATP
ATP
Substrate-level�phosphorylation
Substrate-level�phosphorylation
Oxidative �phosphorylation
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
BioFlix: Cellular Respiration
© 2011 Pearson Education, Inc.
Figure 9.7
Substrate
Product
ADP
P
ATP
Enzyme
Enzyme
Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate
© 2011 Pearson Education, Inc.
Figure 9.8
Energy Investment Phase
Glucose
2 ADP + 2 P
4 ADP + 4 P
Energy Payoff Phase
2 NAD+ + 4 e− + 4 H+
2 Pyruvate + 2 H2O
2 ATP used
4 ATP formed
2 NADH + 2 H+
Net
Glucose
2 Pyruvate + 2 H2O
2 ATP
2 NADH + 2 H+
2 NAD+ + 4 e− + 4 H+
4 ATP formed − 2 ATP used
Figure 9.9-1
Glycolysis: Energy Investment Phase
ATP
Glucose
Glucose 6-phosphate
ADP
Hexokinase
1
Figure 9.9-2
Glycolysis: Energy Investment Phase
ATP
Glucose
Glucose 6-phosphate
Fructose 6-phosphate
ADP
Hexokinase
Phosphogluco-�isomerase
1
2
Figure 9.9-3
Glycolysis: Energy Investment Phase
ATP
ATP
Glucose
Glucose 6-phosphate
Fructose 6-phosphate
Fructose 1,6-bisphosphate
ADP
ADP
Hexokinase
Phosphogluco-�isomerase
Phospho-�fructokinase
1
2
3
Figure 9.9-4
Glycolysis: Energy Investment Phase
ATP
ATP
Glucose
Glucose 6-phosphate
Fructose 6-phosphate
Fructose 1,6-bisphosphate
Dihydroxyacetone�phosphate
Glyceraldehyde�3-phosphate
To�step 6
ADP
ADP
Hexokinase
Phosphogluco-�isomerase
Phospho-�fructokinase
Aldolase
Isomerase
1
2
3
4
5
Figure 9.9-5
Glycolysis: Energy Payoff Phase
2 NADH
2 NAD+
+ 2 H+
2 P i
1,3-Bisphospho-�glycerate
6
Triose�phosphate�dehydrogenase
Figure 9.9-6
Glycolysis: Energy Payoff Phase
2 ATP
2 NADH
2 NAD+
+ 2 H+
2 P i
2 ADP
1,3-Bisphospho-�glycerate
3-Phospho-�glycerate
2
Phospho-�glycerokinase
6
7
Triose�phosphate�dehydrogenase
Figure 9.9-7
Glycolysis: Energy Payoff Phase
2 ATP
2 NADH
2 NAD+
+ 2 H+
2 P i
2 ADP
1,3-Bisphospho-�glycerate
3-Phospho-�glycerate
2-Phospho-�glycerate
2
2
Phospho-�glycerokinase
Phospho-�glyceromutase
6
7
8
Triose�phosphate�dehydrogenase
Figure 9.9-8
Glycolysis: Energy Payoff Phase
2 ATP
2 NADH
2 NAD+
+ 2 H+
2 P i
2 ADP
1,3-Bisphospho-�glycerate
3-Phospho-�glycerate
2-Phospho-�glycerate
Phosphoenol-�pyruvate (PEP)
2
2
2
2 H2O
Phospho-�glycerokinase
Phospho-�glyceromutase
Enolase
6
7
8
9
Triose�phosphate�dehydrogenase
Figure 9.9-9
Glycolysis: Energy Payoff Phase
2 ATP
2 ATP
2 NADH
2 NAD+
+ 2 H+
2 P i
2 ADP
1,3-Bisphospho-�glycerate
3-Phospho-�glycerate
2-Phospho-�glycerate
Phosphoenol-�pyruvate (PEP)
Pyruvate
2 ADP
2
2
2
2 H2O
Phospho-�glycerokinase
Phospho-�glyceromutase
Enolase
Pyruvate�kinase
6
7
8
9
10
Triose�phosphate�dehydrogenase
Figure 9.9a
Glycolysis: Energy Investment Phase
ATP
Glucose
Glucose 6-phosphate
ADP
Hexokinase
1
Fructose 6-phosphate
Phosphogluco-�isomerase
2
Figure 9.9b
Glycolysis: Energy Investment Phase
ATP
Fructose 6-phosphate
ADP
3
Fructose 1,6-bisphosphate
Phospho-�fructokinase
4
5
Aldolase
Dihydroxyacetone�phosphate
Glyceraldehyde�3-phosphate
To�step 6
Isomerase
Figure 9.9c
Glycolysis: Energy Payoff Phase
2 NADH
2 ATP
2 ADP
2
2
2 NAD+
+ 2 H+
2 P i
3-Phospho-�glycerate
1,3-Bisphospho-�glycerate
Triose�phosphate�dehydrogenase
Phospho-�glycerokinase
6
7
Figure 9.9d
Glycolysis: Energy Payoff Phase
2 ATP
2 ADP
2
2
2
2
2 H2O
Pyruvate
Phosphoenol-�pyruvate (PEP)
2-Phospho-�glycerate
3-Phospho-�glycerate
8
9
10
Phospho-�glyceromutase
Enolase
Pyruvate�kinase
Concept 9.3: After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules
© 2011 Pearson Education, Inc.
Oxidation of Pyruvate to Acetyl CoA
© 2011 Pearson Education, Inc.
Figure 9.10
Pyruvate
Transport protein
CYTOSOL
MITOCHONDRION
CO2
Coenzyme A
NAD+
+ H+
NADH
Acetyl CoA
1
2
3
The Citric Acid Cycle
© 2011 Pearson Education, Inc.
Figure 9.11
Pyruvate
NAD+
NADH
+ H+
Acetyl CoA
CO2
CoA
CoA
CoA
2 CO2
ADP + P i
FADH2
FAD
ATP
3 NADH
3 NAD+
Citric�acid�cycle
+ 3 H+
© 2011 Pearson Education, Inc.
Figure 9.12-1
1
Acetyl CoA
Citrate
Citric�acid�cycle
CoA-SH
Oxaloacetate
Figure 9.12-2
1
Acetyl CoA
Citrate
Isocitrate
Citric�acid�cycle
H2O
2
CoA-SH
Oxaloacetate
Figure 9.12-3
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Citric�acid�cycle
NADH
+ H+
NAD+
H2O
3
2
CoA-SH
CO2
Oxaloacetate
Figure 9.12-4
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Succinyl�CoA
Citric�acid�cycle
NADH
NADH
+ H+
+ H+
NAD+
NAD+
H2O
3
2
4
CoA-SH
CO2
CoA-SH
CO2
Oxaloacetate
Figure 9.12-5
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Succinyl�CoA
Succinate
Citric�acid�cycle
NADH
NADH
ATP
+ H+
+ H+
NAD+
NAD+
H2O
ADP
GTP
GDP
P i
3
2
4
5
CoA-SH
CO2
CoA-SH
CoA-SH
CO2
Oxaloacetate
Figure 9.12-6
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Succinyl�CoA
Succinate
Fumarate
Citric�acid�cycle
NADH
NADH
FADH2
ATP
+ H+
+ H+
NAD+
NAD+
H2O
ADP
GTP
GDP
P i
FAD
3
2
4
5
6
CoA-SH
CO2
CoA-SH
CoA-SH
CO2
Oxaloacetate
Figure 9.12-7
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Succinyl�CoA
Succinate
Fumarate
Malate
Citric�acid�cycle
NADH
NADH
FADH2
ATP
+ H+
+ H+
NAD+
NAD+
H2O
H2O
ADP
GTP
GDP
P i
FAD
3
2
4
5
6
7
CoA-SH
CO2
CoA-SH
CoA-SH
CO2
Oxaloacetate
Figure 9.12-8
NADH
1
Acetyl CoA
Citrate
Isocitrate
α-Ketoglutarate
Succinyl�CoA
Succinate
Fumarate
Malate
Citric�acid�cycle
NAD+
NADH
NADH
FADH2
ATP
+ H+
+ H+
+ H+
NAD+
NAD+
H2O
H2O
ADP
GTP
GDP
P i
FAD
3
2
4
5
6
7
8
CoA-SH
CO2
CoA-SH
CoA-SH
CO2
Oxaloacetate
Figure 9.12a
Acetyl CoA
Oxaloacetate
Citrate
Isocitrate
H2O
CoA-SH
1
2
Figure 9.12b
Isocitrate
α-Ketoglutarate
Succinyl�CoA
NADH
NADH
NAD+
NAD+
+ H+
CoA-SH
CO2
CO2
3
4
+ H+
Figure 9.12c
Fumarate
FADH2
CoA-SH
6
Succinate
Succinyl�CoA
FAD
ADP
GTP
GDP
P i
ATP
5
Figure 9.12d
Oxaloacetate
8
Malate
Fumarate
H2O
NADH
NAD+
+ H+
7
Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis
© 2011 Pearson Education, Inc.
The Pathway of Electron Transport
© 2011 Pearson Education, Inc.
Figure 9.13
NADH
FADH2
2 H+ + 1/2 O2
2 e−
2 e−
2 e−
H2O
NAD+
Multiprotein�complexes
(originally from � NADH or FADH2)
I
II
III
IV
50
40
30
20
10
0
Free energy (G) relative to O2 (kcal/mol)
FMN
Fe∙S
Fe∙S
FAD
Q
Cyt b
Cyt c1
Cyt c
Cyt a
Cyt a3
Fe∙S
© 2011 Pearson Education, Inc.
Chemiosmosis: The Energy-Coupling Mechanism
© 2011 Pearson Education, Inc.
Figure 9.14
INTERMEMBRANE SPACE
Rotor
Stator
H+
Internal�rod
Catalytic�knob
ADP
+
P i
ATP
MITOCHONDRIAL MATRIX
Figure 9.15
Protein�complex�of electron�carriers
(carrying electrons�from food)
Electron transport chain
Oxidative phosphorylation
Chemiosmosis
ATP�synth-�ase
I
II
III
IV
Q
Cyt c
FAD
FADH2
NADH
ADP + P i
NAD+
H+
2 H+ + 1/2O2
H+
H+
H+
2
1
H+
H2O
ATP
© 2011 Pearson Education, Inc.
An Accounting of ATP Production by Cellular Respiration
glucose → NADH → electron transport chain → proton-motive force → ATP
© 2011 Pearson Education, Inc.
Figure 9.16
Electron shuttles�span membrane
MITOCHONDRION
2 NADH
2 NADH
2 NADH
6 NADH
2 FADH2
2 FADH2
or
+ 2 ATP
+ 2 ATP
+ about 26 or 28 ATP
Glycolysis
Glucose
2 Pyruvate
Pyruvate oxidation
2 Acetyl CoA
Citric�acid�cycle
Oxidative�phosphorylation:�electron transport�and�chemiosmosis
CYTOSOL
Maximum per glucose:
About�30 or 32 ATP
Concept 9.5: Fermentation and anaerobic �respiration enable cells to produce ATP without the use of oxygen
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
Types of Fermentation
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
Animation: Fermentation Overview Right-click slide / select “Play”
Figure 9.17
2 ADP
2 ATP
Glucose
Glycolysis
2 Pyruvate
2 CO2
2
+
2 NADH
2 Ethanol
2 Acetaldehyde
(a) Alcohol fermentation
(b) Lactic acid fermentation
2 Lactate
2 Pyruvate
2 NADH
Glucose
Glycolysis
2 ATP
2 ADP
+
2
P
i
NAD
2 H+
+
2
P
i
2
NAD
+
+
+
2 H+
Figure 9.17a
2 ADP + 2 P i
2 ATP
Glucose
Glycolysis
2 Pyruvate
2 CO2
2 NAD
+
2 NADH
2 Ethanol
2 Acetaldehyde
(a) Alcohol fermentation
+
2 H
+
© 2011 Pearson Education, Inc.
Figure 9.17b
(b) Lactic acid fermentation
2 Lactate
2 Pyruvate
2 NADH
Glucose
Glycolysis
2 ADP + 2 P i
2 ATP
2 NAD
+
+
2 H
+
Comparing Fermentation with Anaerobic and Aerobic Respiration
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
Figure 9.18
Glucose
CYTOSOL
Glycolysis
Pyruvate
No O2 present:�Fermentation
O2 present:� Aerobic cellular� respiration
Ethanol,�lactate, or�other products
Acetyl CoA
MITOCHONDRION
Citric�acid�cycle
The Evolutionary Significance of Glycolysis
© 2011 Pearson Education, Inc.
Concept 9.6: Glycolysis and the citric acid cycle connect to many other metabolic pathways
© 2011 Pearson Education, Inc.
The Versatility of Catabolism
© 2011 Pearson Education, Inc.
© 2011 Pearson Education, Inc.
Figure 9.19
Carbohydrates
Proteins
Fatty�acids
Amino�acids
Sugars
Fats
Glycerol
Glycolysis
Glucose
Glyceraldehyde 3- P
NH3
Pyruvate
Acetyl CoA
Citric�acid�cycle
Oxidative�phosphorylation
Biosynthesis (Anabolic Pathways)
© 2011 Pearson Education, Inc.
Regulation of Cellular Respiration via Feedback Mechanisms
© 2011 Pearson Education, Inc.
Figure 9.20
Phosphofructokinase
Glucose
Glycolysis
AMP
Stimulates
−
−
+
Fructose 6-phosphate
Fructose 1,6-bisphosphate
Pyruvate
Inhibits
Inhibits
ATP
Citrate
Citric�acid�cycle
Oxidative�phosphorylation
Acetyl CoA
Figure 9.UN06
Inputs
Outputs
Glucose
Glycolysis
2 Pyruvate + 2
ATP
+ 2 NADH
Figure 9.UN07
Inputs
Outputs
2 Pyruvate
2 Acetyl CoA
2 Oxaloacetate
Citric�acid�cycle
2
2
6
8
ATP
NADH
FADH2
CO2
Figure 9.UN08
Protein complex�of electron�carriers
(carrying electrons from food)
INTERMEMBRANE�SPACE
MITOCHONDRIAL MATRIX
H+
H+
H+
2 H+ + 1/2 O2
H2O
NAD+
FADH2
FAD
Q
NADH
I
II
III
IV
Cyt c
Figure 9.UN09
INTER-�MEMBRANE�SPACE
H+
ADP + P i
MITO-�CHONDRIAL�MATRIX
ATP�synthase
H+
ATP
Figure 9.UN10
Time
pH difference�across membrane
Figure 9.UN11
ATP
ADP
NADH
NAD+
FAHD2
FAD+
e-
e-
e-
e-