
Automata Invasion

Michael McCandless
Robert Muir

Lucene Revolution
May 9, 2012

Agenda

● Who we are
● Overview of finite state automata/transducers
● Three Lucene implementations

○ Automaton
○ FST
○ TokenStream

● Applications in Lucene

● Lucene/Solr committer, PMC member
○ 6 years = old hat!

● Tika committer, PMC member
● Co-author Lucene in Action, 2nd ed.
● http://blog.mikemccandless.com
● Sponsored by IBM (thank you!)

Who we are

http://blog.mikemccandless.com

● Lucene/Solr committer, PMC member
○ 3 years = young hat, yet: less hair!

● Lucid Imagination employee
● Background in internationalization
● Tangled up in finite state

○ NLP tasks
○ One of my first contributions to Lucene

● http://twitter.com/rcmuir

Who we are

http://twitter.com/rcmuir

● Who we are
● Overview of finite state automata/transducers
● Three Lucene implementations

○ Automaton
○ FST
○ TokenStream

● Applications in Lucene

Agenda

● Set<int[]>:
○ mop, moth, pop, slop, sloth, stop, top

● Start node, final node
● Append arc labels as you traverse
● Traverse all paths to get all strings
● Determinize, minimize, union, intersect, ...

Finite State Automata (FSA)

● Adds optional output to each arc
○ Accumulate output as you traverse

● Map<int[],T>
○ mop: 0, moth: 1, pop: 2, slop: 3, sloth: 4, stop: 5, top: 6

● T is pluggable (defined by output algebra)
● Deep theory, many algorithms...

Finite State Transducer (FST)

● Who we are
● Overview of finite state automata/transducers
● Three Lucene implementations

○ Automaton
○ FST
○ TokenStream

● Applications in Lucene

Agenda

● org.apache.lucene.util.automaton.*
○ Poached from Anders Møller's Brics

http://www.brics.dk/automaton
● Build up any FSA one node/arc at a time

○ Automaton, Transition, State
○ Transition has min/max label

● Many standard algorithms
○ Minimize
○ Determinize
○ Intersect
○ Union
○ Regexp -> Automaton

● RunAutomaton for stepping

Lucene's FSA Implementation

http://www.brics.dk/automaton

● org.apache.lucene.util.fst.*
● FST encoded as a byte[]
● Write-once API

○ From Mihov & Maurel paper
○ Build minimal, acyclic FST from pre-sorted inputs
○ Fast (linear time with input size), low memory
○ Optional two-pass packing can shrink by ~25%

● Traverse FST one arc at a time
○ Decode byte[] during lookup

● SortedMap<int[],T>: arcs are sorted by label
○ getByOutput also possible if outputs are sorted

● http://s.apache.org/LuceneFSTs

Lucene's FST Implementation

http://s.apache.org/LuceneFSTs

Lucene's FST Implementation

Downside: Generics Policeman does not approve!

@UweSays "I looked at the code, it was
ununderstandable why this thing was generified"

https://twitter.com/#%21/UweSays

● Streaming FSA, one arc at a time

● New PositionLengthAttribute in 3.6.0
○ How many positions does the token "span"
○ TokenStreamToAutomaton
○ Indexer ignores it (sausage!)
○ http://s.apache.org/TokenGraphs

Lucene's TokenStreams are FSAs!

http://s.apache.org/TokenGraphs

● Fixing all analyzers to behave with graphs?

Lucene's TokenStreams are FSAs!

● Who we are
● Overview of finite state automata/transducers
● Three Lucene implementations

○ Automaton
○ FST
○ TokenStream

● Applications in Lucene

Agenda

● Automaton specifies which terms match
● New Terms.intersect(Automaton) method

○ Visits all matching terms & docs
● Example

○ RegexpQuery
○ WildcardQuery
○ FuzzyQuery

● Other possible uses
○ Stemming at query time via expansion

AutomatonQuery

How to implement algorithm
from 67-page paper
Hands-On

● Lev1(dogs)
● 100X faster!
● Schulz and Mihov

algo is hairy
● Help from Jean-Philippe

Barrette-LaPierre
● Includes transpositions
● UTF32toUTF8 conversion
● http://s.apache.org/FuzzyQuery

http://s.apache.org/FuzzyQuery

FuzzyQuery

http://s.apache.org/FuzzyQuery

● Use LevT automata to find respellings
● Decent performance

○ ~47 QPS on Wikipedia, single thread
● No side-car index required!

DirectSpellChecker

"I'm confident that in three
weeks, I'll be done."

● Donated by Atilika Inc. (アティリカ株式会社)
● Hard problem! (no whitespace, mixed Kanji,

Hiragana, Katakana, compounds)
● Dictionaries are stored as FST

○ System dictionary and user dictionaries
○ 11.8X smaller than double array trie

● Viterbi search finds least-cost segmentation
● Token graph for compound words

○ ショッピングセンター (shopping center),
○ ショッピング(shopping), センター (center)

JapaneseTokenizer (Kuromoji)

● E.g: w e a suggests weather
● Compile all suggestible queries + weights

into FST(s)
● Two FST based suggesters

○ FSTSuggester quantizes weights into buckets
○ WFSTSuggester doesn't

● Find all paths after user's prefix
● Fast: ~240K lookups/sec
● Active work in progress

○ Fuzzy, analyzing, ngram

Query Suggesters

 wacky|1
 waffle|4
 wealthy|3
 weather|10
 weaver|7

WFSTSuggester example

"I don't think this will work but I can't
provide a counterexample right now"

● Apply at index time or query time or both
● First version used recursive maps
● New version (in 3.4.0) uses FST

○ 5X faster filter time
○ 14X faster build time
○ 59X less RAM

● Multi-token synonyms mess up graph
● Cannot consume token graph
● http://s.apache.org/TokenGraphs

SynonymFilter

http://s.apache.org/TokenGraphs

http://s.apache.org/LuceneRespellPerf

BlockTree Terms Dictionary

http://s.apache.org/LuceneRespellPerf

● Terms dict maps terms to metadata/postings
○ SortedMap<Term,Postings>
○ Pluggable (per codec)

● Term blocks on disk; FST index in memory
○ Variable number of terms per block (vs 3.x)

● Variant of a burst trie (Heinz, Zobel, Williams)
○ Terms assigned to blocks by shared prefix, e.g.

http://www.*
● Fast intersect(Automaton)
● Fast "term can't exist"

BlockTree Terms Dictionary

able
above
apple
perfect
preface
prefecture
prefix
previous
profit
programmer
project
zoo

BlockTree Example

a*
perfect
preface
prefecture
prefix
previous
profit
programmer
project
zoo

BlockTree Example

ble
bove
pple

a*
p*
zoo

ble
bove
pple

erfect
reface
refecture
refix
revious
rofit
rogrammer
roject

BlockTree Example

a*
p*
zoo

ble
bove
pple

erfect
re*
ro*

face
fecture
fix
vious

fit
grammer
ject

BlockTree Example

a*
p*
zoo

ble
bove
pple

erfect
re*
ro*

face
fecture
fix
vious

fit
grammer
ject

BlockTree Example

http://s.apache.org/LucenePKPerf

MemoryPostingsFormat

http://s.apache.org/LucenePKPerf

● Postings format is pluggable per-field
● Store all terms + postings in an FST

○ FST is saved to disk
● Great match for primary key fields, date filters

○ 2.8X faster PK lookup
● http://s.apache.org/MemPostingFormat

MemoryPostingsFormat

http://s.apache.org/MemPostingFormat

● MappingCharFilter (in progress...)
● FieldCache/DocValues (prototype patch)
● FSTQuery?
● More suggesters
● Top-N most frequent terms for approx

distributed IDF
● patches welcome!

Future FSA/T Usages

● FSA/Ts are a good match for Lucene
● Lucene has three wildly different

implementations
● FSA/Ts are now used in a number of

places...
● ... and more coming

Conclusions

● Finite State Automata in Lucene
○ Dawid Weiss: Lucene Revolution 2011
○ http://slidesha.re/vKtpVA

● FST API code samples
○ http://s.apache.org/pR

More Information

http://slidesha.re/vKtpVA
http://s.apache.org/pR

